Cauchy收敛准则证明其他实数完备性定理

1、Cauchy收敛准则证明确界原理

证:

S S S为非空有上界数集.由实数的阿基米德性,对任何正数 a a a,存在整数 K a K_a Ka,使得 λ a = k a a \lambda_{a}={k}_aa λa=kaa S S S的上界,而 λ a − a = ( k a − 1 ) a \lambda_{a}-a=\left(k_{a}-1\right)a λaa=(ka1)a不是 S S S的上界,即存在 a ′ ∈ S {a}^{\prime}\in{S} aS,使得 a ′ > ( k a − 1 ) a {a}^{\prime}> \left({k}_{{a}}-1\right){a} a>(ka1)a

分别取 a = 1 n , n = 1 , 2 , ⋯ a=\frac{1}{{n}},{n}=1,2,\cdots a=n1,n=1,2,,则对每一个正整数 n n n,存在相应的 λ n \lambda_{n} λn,使得 λ n \lambda_{n} λn S S S的上界,而
λ n − 1 n \lambda_{n}-\frac{1}{n} λnn1不是 S S S的上界,故存在 a ′ ∈ S a^{\prime}\in{S} aS,使得 a ′ > λ n − 1 n a'> \lambda_{{n}}-\frac{1}{{n}} a>λnn1

又对正整数 m m m λ m \lambda_m λm S S S的上界,故有 λ m ⩾ a ′ \lambda_{{m}}\geqslant{a}^{\prime} λma.结合 ( 6 ) (6) (6)式得

λ n − λ m < 1 n \lambda_{{n}}-\lambda_{{m}}< \frac{1}{{n}} λnλm<n1

同理有

λ m − λ n < 1 m \lambda_{{m}}-\lambda_{{n}}< \frac{1}{{m}} λmλn<m1

从而得

∣ λ m − λ n ∣ < max ⁡ { 1 n , 1 m } \left|\lambda_{{m}}-\lambda_{{n}}\right|< \max\left\{\frac{1}{{n}},\frac{1}{{m}}\right\} λmλn<max{n1,m1}

于是,对任给的 ε > 0 \varepsilon> 0 ε>0,存在 N > 0 N> 0 N>0,使得当 m , n > N m,n> N m,n>N时有

∣ λ m − λ n ∣ < ε \left|\lambda_{{m}}-\lambda_{{n}}\right|< \varepsilon λmλn<ε

由柯西收剑准则, 数 列 { λ n } 收 敛 \textcolor{teal}{数列\{\lambda_n\}收敛} {λn}.记

lim ⁡ n → ∞ λ n = λ → ( 1 ) \lim_{n\rightarrow\infty}\lambda_{n}=\lambda\rightarrow(1) nlimλn=λ(1)

现 在 证 明 λ 就 是 S 的 上 确 界 . \textcolor{teal}{现在证明\lambda就是S的上确界.} λS.

首先,对任何 a ∈ S a\in S aS和正整数 n n n a ≤ λ n a\le\lambda_{{n}} aλn,由 ( 1 ) (1) (1)式得 a ≤ λ a\le\lambda aλ,即 λ \lambda λ S S S的一个上界.其次,对任何 δ > 0 \delta> 0 δ>0,由 1 n → 0 ( n → ∞ ) \frac{1}{{n}}\rightarrow0({n}\rightarrow\infty) n10(n) ( 1 ) (1) (1)式,对充分大的 n n n,同时有

1 n < δ 2 , λ n > λ − δ 2 \frac{1}{n}< \frac{\delta}{2},\lambda_{n}> \lambda-\frac{\delta}{2} n1<2δλn>λ2δ

又因 λ n − 1 n \lambda_{{n}}-\frac{1}{{n}} λnn1不是 S S S的上界,故存在 a ′ ∈ S a^{\prime}\in{S} aS,使得

a ′ > λ n − 1 n a^{\prime}> \lambda_{{n}}-\frac{1}{{n}} a>λnn1

结合上式得

a ′ > λ n − 1 n > λ − δ 2 − δ 2 = λ − δ a'> \lambda_{{n}}-\frac{1}{{n}}> \lambda-\frac{\delta}{2}-\frac{\delta}{2}=\lambda-\delta a>λnn1>λ2δ2δ=λδ

这说明 λ \lambda λ S S S的上确界。

同理可证:若 S S S为非空有下界数集,则必存在下确界.

2、Cauchy收敛准则证明单调有界定理

不妨设 { x n } \left\{x_{n}\right\} {xn}为单增有上界数列。

假设 { x n } \left\{x_{n}\right\} {xn}无极限, C a u c h y Cauchy Cauchy收剑准则可知, ∃ ε 0 > 0 \exists\varepsilon_{0}> 0 ε0>0, ∀ N > 0 \forall N> 0 N>0, ∃ m > n > N \exists m> n> N m>n>N,但是

x n > x m + ε 0 x_{n}> x_{m}+\varepsilon_{0} xn>xm+ε0

N N N的任意性,不难得到 { x n } \left\{x_{n}\right\} {xn}的一个严格单增的子列 { x n k } \left\{x_{n_{k}}\right\} {xnk},满足

x n k + 1 > x n k + ε 0 > x n k − 1 + 2 ε 0 > ⋯ > x n 1 + k ε 0 x_{n_{k+1}}> x_{n_{k}}+\varepsilon_{0}> x_{n_{k-1}}+2\varepsilon_{0}> \cdots> x_{n_{1}}+k\varepsilon_{0} xnk+1>xnk+ε0>xnk1+2ε0>>xn1+kε0

由于 ε 0 > 0 \varepsilon_{0}> 0 ε0>0, k > 0 k> 0 k>0,所以当 k → ∞ k\rightarrow\infty k时,有 x n k + 1 → + ∞ x_{n_{k+1}}\rightarrow+\infty xnk+1+。这与 { x n } \left\{x_{n}\right\} {xn}为有界数列
矛盾,故 { x n } \left\{x_{n}\right\} {xn}收敛

3、Cauchy收敛准则证明区间套定理


存在性
构 造 区 间 套 \textcolor{teal}{构造区间套}

{ [ a n , b n ] } \left\{\left[a_{n},b_{n}\right]\right\} {[an,bn]} C a n t o r Cantor Cantor区间套则由 b n − a n → 0 , ( n → ∞ b_{n}-a_{n}\rightarrow0,(n\rightarrow\infty bnan0,(n可知, ∀ ε > 0 \forall\varepsilon> 0 ε>0 ∃ N > 0 \exists N> 0 N>0, n > N n> N n>N时,有 ∣ a n − b n ∣ < ε ) \left|a_{n}-b_{n}\right|< \varepsilon) anbn<ε)

由于 { a n } \left\{a_{n}\right\} {an}单调递增, { b n } \left\{b_{n}\right\} {bn}中的每一个元素都为 { a n } \left\{a_{n}\right\} {an}的上界。故 ∀ m > n > N \forall m> n> N m>n>N,则有

a n ≤ a m ≤ b m ≤ b n {a}_{{n}}\leq{a}_{{m}}\leq{b}_{{m}}\leq{b}_{{n}} anambmbn

所以

∣ a m − a n ∣ = a m − a n ≤ b n − a n = ∣ a n − b n ∣ < ε \begin{array}{l} \left|{a}_{{m}}-{a}_{{n}}\right|={a}_{{m}}-{a}_{{n}}\leq{b}_{{n}}-{a}_{{n}}=\left|{a}_{{n}}-{b}_{{n}}\right|< \varepsilon \end{array} aman=amanbnan=anbn<ε

∣ b m − b n ∣ = b n − b m ≤ b n − a n = ∣ a n − b n ∣ < ε \begin{array} {l} |b_{m}-b_{n}|=b_{n}-b_{m}\leq b_{n}-a_{n}=|a_{n}-b_{n}|< \varepsilon \end{array} bmbn=bnbmbnan=anbn<ε

故 由 C a u c h y 收 敛 准 则 可 知 { a n } , { b n } 收 敛 \textcolor{red}{故由Cauchy收敛准则可知\{a\left._{{n}}\right\},\left\{{b}_{{n}}\right\}收敛} Cauchy{an},{bn},

lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = r \lim_{{n}\rightarrow\infty}{a}_{{n}}=\lim_{{n}\rightarrow\infty}{b}_{{n}}={r} nliman=nlimbn=r

下 证 r ∈ [ a n , b n ] \textcolor{teal}{下证{r}\in\left[{a}_{{n}},{b}_{{n}}\right]} r[an,bn],用 反 证 法 \textcolor{red}{反证法}

∃ N 1 \exists{N}_{1} N1,使 r < a N 1 {r}< {a}_{{N}_{1}} r<aN1,由 { a n } \left\{{a}_{{n}}\right\} {an}单调 递 增 \textcolor{red}{递增} n > N 1 n> {N}_{1} n>N1时, a n > a N 1 > r {a}_{{n}}> {a}_{{N}_{1}}> {r} an>aN1>r,同理

∃ N 2 \exists N_{2} N2,使 r > a N 2 r> {a}_{{N}_{2}} r>aN2,由 { b n } \left\{{b}_{{n}}\right\} {bn}单调 递 减 \textcolor{red}{递减} n > N 2 n> {N}_{2} n>N2时, r > b n > b N 2 {r}> {b}_{{n}}> b_{{N}_{2}} r>bn>bN2

所以 ∣ b n − r ∣ = r − b n ≥ 0 \left|{b}_{{n}}-{r}\right|={r}-{b}_{{n}}\geq0 bnr=rbn0,两边取极限有 0 ≤ lim ⁡ n → ∞ ( r − b n ) < 0 0\leq\lim_{n\rightarrow\infty}\left({r}-{b}_{{n}}\right)< 0 0limn(rbn)<0,矛盾

r ∈ [ a n , b n ] r\in\left[{a}_{{n}},{b}_{{n}}\right] r[an,bn]

唯一性

最 后 证 明 满 足 r 是 唯 一 的 . \textcolor{teal}{最后证明满足r是唯一的.} r.

设数r’也满足

a n ⩽ r ′ ⩽ b n , n = 1 , 2 , ⋯ {a}_{{n}}\leqslant{r}^{\prime}\leqslant{b}_{{n}},{n}=1,2,\cdots anrbn,n=1,2,

因为 a n ⩽ r ⩽ b n , n = 1 , 2 , ⋯ {a}_{{n}}\leqslant{r}\leqslant{b}_{{n}},{n}=1,2,\cdots anrbn,n=1,2,,
则由 ( 1 ) ( 2 ) (1)(2) (1)(2)式有

∣ r − r ′ ∣ ⩽ b n − a n , n = 1 , 2 , ⋯ \left|{r}-{r}^{\prime}\right|\leqslant{b}_{{n}}-{a}_{{n}},{n}=1,2,\cdots rrbnan,n=1,2,

由区间套的条件得

∣ r − r ′ ∣ ≤ lim ⁡ n → ∞ ( b n − a n ) = 0 \left|{r}-{r}^{\prime}\right|\leq\lim_{{n}\rightarrow\infty}({b}_{n}-{a}_{n})=0 rrnlim(bnan)=0

故有 r ′ = r r' = r r=r.唯一性即证。

4、Cauchy收敛准则证明有限覆盖定理

即闭区间 [ a , b ] [a,b] [a,b]的任一开覆盖 H H H都有有限的子覆盖

( 1 ) (1) (1) [ a , b ] [a,b] [a,b]上选取一数列 { x n } \{x_n\} {xn},使得

( x n − 1 n , x n + 1 n ) ∩ [ a , b ] (x_n-\frac{1}{n},x_n+\frac{1}{n})\cap[{a},{b}] (xnn1,xn+n1)[a,b]

具 有 与 性 质 p \textcolor{red}{具有与性质p} p:闭区间 [ a , b ] [a,b] [a,b]能被 H H H中有限个开区间覆盖,

相 反 的 性 质 p − 1 \textcolor{red}{相反的性质p^{-1} } p1:闭区间 [ a , b ] [a,b] [a,b]不能被 H H H中有限个开区间覆盖;

[ a , b ] [a,b] [a,b]具有性质 p − 1 p^{-1} p1,则 x 1 ∈ [ a , b ] x_{1}\in[{a},{b}] x1[a,b],使 ( x 1 − 1 , x 1 + 1 ) ∩ [ a , b ] \left(x_{1}-1,x_{1}+1\right)\cap[{a},{b}] (x11,x1+1)[a,b]具有性质 p − 1 p^{-1} p1,否则, [ a , b ] [a,b] [a,b]具有性质 p p p,如此继续,得一数列 { x n } \{x_n\} {xn},使

⋂ k = 1 n ( x k − 1 k , x k + 1 k ) ∩ [ a , b ] \bigcap_{{k}=1}^{n}\left(x_{{k}}-\frac{1}{{k}},x_{{k}}+\frac{1}{{k}}\right)\cap[{a},{b}] k=1n(xkk1,xk+k1)[a,b]

具有性质 p − 1 p^{-1} p1

( 2 ) (2) (2)因为

∣ x n − x m ∣ ⩽ max ⁡ { 1 n , 1 m } \left|x_{n}-x_{{m}}\right|\leqslant\max\left\{\frac{1}{n},\frac{1}{{m}}\right\} xnxmmax{n1,m1}

所以,数列 { x n } \{x_n\} {xn}满足 C a u c h y Cauchy Cauchy收敛准则的条件;

( 3 ) (3) (3) C a u c h y Cauchy Cauchy收敛准则得,

ζ = lim ⁡ n → ∞ x n \zeta=\lim_{n\rightarrow\infty}x_n ζ=nlimxn

( 4 ) (4) (4)显然, ζ ∈ [ a , b ] \zeta\in[{a},{b}] ζ[a,b]存在开区间 ( α , β ) ∈ H (\alpha,\beta)\in H (α,β)H,使 ζ ∈ ( α , β ) \zeta\in(\alpha,\beta) ζ(α,β)又由 lim ⁡ n → ∞ x n = ζ \lim_{n\rightarrow\infty}x_n=\zeta limnxn=ζ,存在 x n x_n xn,使

( x n − 1 n , x n + 1 n ) ⊂ ( α , β ) \left(x_n-\frac{1}n,x_n+\frac{1}n\right)\subset(\alpha,\beta) (xnn1,xn+n1)(α,β)

这与

( x n − 1 n , x n + 1 n ) \left(x_n-\frac{1}n,x_n+\frac{1}n\right) (xnn1,xn+n1)

具有性质 p − 1 p^{-1} p1矛盾。

5、Cauchy收敛准则证明聚点定理

即任一非空有界无限点集 S S S必有聚点
证:
( 1 ) (1) (1) a a a S S S的下界,对任意固定的自然数 n n n,存在自然数 k n k_n kn,使 x n = a + k n n {x}_{n}={a}+\frac{{k}_{n}}{n} xn=a+nkn满足

1 ) S ∩ ( x n , + ∞ ) 1)S\cap({x}_{n,}{+\infty}) 1)S(xn,+)至多为有限点集;

2 ) S ∩ ( x n − 1 n , + ∞ ) 2){S}\cap\left({x}_{n}-\frac{1}{{n}},+\infty\right) 2)S(xnn1,+)为无限点集

( 2 ) (2) (2) ( 1 ) (1) (1)对任意自然数 n 、 m n、m nm, x n − 1 n < x m x_n-\frac{1}{{n}} <{x}_m xnn1<xm,这是因为,若存在 n , m {n},{m} n,m使 x n − 1 n ⩾ x m {x}_{n}-\frac{1}{{n}}\geqslant{x}_{m} xnn1xm

S ∩ ( x n − 1 n , + ∞ ) ⊂ S ∩ ( x m , + ∞ ) {S}\cap\left({x}_{n}-\frac{1}{{n}},+\infty\right)\subset{S}\cap({x}_{m},+\infty) S(xnn1,+)S(xm,+)

这与 1 ) 、 2 ) 1)、2) 1)2)矛盾,从而

x n − x m ∣ ⩽ max ⁡ { 1 n , 1 m } x_{n}-x_{m}\mid\leqslant\max\left\{\frac{1}{n},\frac{1}{m}\right\} xnxmmax{n1,m1}

因此 { x n } \left\{x_{n}\right\} {xn}满足 C a u c h y Cauchy Cauchy收敛准则

( 3 ) (3) (3) C a u c h y Cauchy Cauchy收敛准则得, ζ = lim ⁡ n → ∞ x n \zeta=\lim_{n\rightarrow\infty}{x}_n ζ=limnxn

( 4 ) (4) (4) ε > 0 \varepsilon> 0 ε>0,由于 lim ⁡ n → ∞ ( x n − 1 n ) = ζ \lim_{n\rightarrow\infty}\left({x}_{{n}}-\frac{1}{{n}}\right)=\zeta limn(xnn1)=ζ,所以存在 n 0 {n}_0 n0使得

x n 0 , x n 0 − 1 n 0 ∈ ( ζ − ε , ζ + ε ) x_{n_{0}},x_{n_{0}}-\frac{1}{n_{0}}\in(\zeta-\varepsilon,\zeta+\varepsilon) xn0,xn0n01(ζε,ζ+ε)

从而
S ∩ ( x n 0 − 1 n 0 , + ∞ ) ⊂ S ∩ ( ζ − ε , + ∞ ) S\cap\left(x_{n_{0}}-\frac{1}{n_{0}},+\infty\right)\subset S\cap(\zeta-\varepsilon,+\infty) S(xn0n01,+)S(ζε,+)

2 ) 2) 2) S ∩ ( ζ − ε , + ∞ ) S\cap(\zeta-\varepsilon,+\infty) S(ζε,+)是无限点集,又

S ∩ ( ζ + ε , + ∞ ) ⊂ S ∩ ( X n 0 , + ∞ ) {S}\cap(\zeta+\varepsilon,+\infty)\subset{S}\cap\left({X}_{{n}_{0}},+\infty\right) S(ζ+ε,+)S(Xn0,+)

1 ) 1) 1) S ∩ ( ξ + ε , + ∞ ) S\cap(\xi+\varepsilon,+\infty) S(ξ+ε,+)至多是有限点集,因此

S ∩ ( ζ − ε , ζ + ε ) S\cap(\zeta-\varepsilon,\zeta+\varepsilon) S(ζε,ζ+ε)

是无限点集,即 ζ \zeta ζ S S S的聚点

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页