nowcoder-剑指offer-9-变态跳台阶

原题链接

由题意可知,当该青蛙在第N阶台阶时,该青蛙可以从第1阶台阶到第N-1阶台阶跳跃至第N阶台阶,则有 F ( N ) = F ( N − 1 ) + F ( N − 2 ) + F ( N − 3 ) + F ( N − 4 ) + … … + F ∗ ( 2 ) + F ( 1 ) F(N) = F(N-1)+F(N-2)+F(N-3)+F(N-4)+……+F*(2)+F(1) F(N)=F(N1)+F(N2)+F(N3)+F(N4)++F(2)+F(1)
又因为 F ( N − 1 ) = F ( N − 2 ) + F ( N − 3 ) + F ( N − 4 ) + … … + F ∗ ( 2 ) + F ( 1 ) F(N-1) = F(N-2)+F(N-3)+F(N-4)+……+F*(2)+F(1) F(N1)=F(N2)+F(N3)+F(N4)++F(2)+F(1)
所以 F ( N ) = F ( N − 1 ) + F ( N − 1 ) = F ( N − 1 ) ∗ 2 F(N) = F(N-1)+F(N-1)=F(N-1)*2 F(N)=F(N1)+F(N1)=F(N1)2
F ( N ) = N 2 F(N)=N^2 F(N)=N2,对于第N阶台阶,总共有 N 2 N^2 N2阶跳法
则代码如下:

public class Solution {
    public int JumpFloorII(int target) {
        return (int)Math.pow(2,target-1);
    }
}
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页