数据结构与算法之 十大排序算法

本文详细介绍了十大排序算法,包括选择排序、冒泡排序、插入排序、希尔排序、快速排序、堆排序、归并排序、计数排序、桶排序和基数排序。这些算法各有特点,如稳定性、时间复杂度等。例如,选择排序和堆排序是不稳定的,而插入排序和归并排序则是稳定的。快速排序在平均情况下的时间复杂度为 O(nlogn),而计数排序和桶排序在特定条件下可以达到线性时间复杂度。通过理解这些排序算法,有助于提升编程技能和解决问题的能力。

十大排序算法

排序算法的性质

OI Wiki:排序简介

  • 稳定性:相等的元素经过排序之后相对顺序**是否发生了改变。
  • 时间复杂度:时间复杂度分为最优时间复杂度、平均时间复杂度和最坏时间复杂度。

十大排序算法总览

选择排序

OI Wiki:选择排序

算法思路

​ 选择排序的算法思路是每次找出剩下元素中最小(或最大)的元素,按顺序放到前面的位置(具体操作是和前面的元素进行交换)。

稳定性

​ 由于 swap(交换两个元素)操作的存在,选择排序是一种不稳定的排序算法。

​ 例如:数组 [6、7、6、2、8],在对其进行第一遍循环的时候,会将第一个位置的 6 与后面的 2 进行交换。此时,就已经将两个 6 的相对前后位置改变了。

时间复杂度

​ 选择排序的最优时间复杂度、平均时间复杂度和最坏时间复杂度均为 O(n^2)。

代码实现

// Java Version
public void selectionSort(int[] arr) {
   
   
    int len = arr.length;
    for (int i = 0; i < len - 1; i++) {
   
   
        int idx = i;
        // 寻找剩下元素中最小的一个
        for (int j = i + 1; j < len; j++) {
   
   
            if (arr[j] < arr[idx]) {
   
   
                idx = j;
            }
        }
        // 交换元素
        int temp = arr[i];
        arr[i] = arr[idx];
        arr[idx] = temp;
    }
}

冒泡排序

OI Wiki:冒泡排序

算法思路

​ 冒泡排序的算法思路是每次检查相邻两个元素,如果前面的元素与后面的元素满足给定的排序条件,就将相邻两个元素交换。当没有相邻的元素需要交换时,排序就完成了。

​ 经过 i 次扫描后,数列的末尾 i 项必然是最大的 i 项,因此冒泡排序最多需要扫描 n - 1 遍数组就能完成排序。

稳定性

​ 冒泡排序是一种稳定的排序算法。

时间复杂度

  • 最好情况下:在序列完全有序时,冒泡排序只需遍历一遍数组,不用执行任何交换操作,时间复杂度为 O(n)。
  • 在最坏情况下,冒泡排序要执行 n * (n - 1) / 2 次交换操作,时间复杂度为 O(n^2)。
  • 冒泡排序的平均时间复杂度为 O(n^2)。

代码实现

// Java Version
public void bubbleSort(int[] arr) {
   
   
    int len = arr.length;
    boolean flag = true;
    while (flag) {
   
   
        flag = false;
        for (int i = 0; i < len - 1; i++) {
   
   
            if (arr[i] > arr[i + 1]) {
   
   
                flag = true;
                int temp = arr[i];
                arr[i] = arr[i + 1];
                arr[i + 1] = temp;
            }
        }
    }
}

插入排序

OI Wiki:插入排序

算法思路

​ 插入排序的算法思路是将待排列元素划分为“已排序”和“未排序”两部分,每次从“未排序的”元素中选择一个插入到“已排序的”元素中的正确位置。

稳定性

​ 插入排序是一种稳定的排序算法。

时间复杂度

​ 插入排序的最优时间复杂度为 O(n),在数列几乎有序时效率很高。

​ 插入排序的最坏时间复杂度和平均时间复杂度都为 O(n^2)。

算法实现

// Java Version
 public void InsertionSort(int[] arr) {
   
   
     int len = arr.length;
     for (int i = 1; i < len; i++) {
   
   
         int now = arr[i];
         int j = i - 1;
         while (j >= 0 && arr[j] > now) {
   
   
             arr[j + 1] = arr[j];
             j--;
         }
         arr[j + 1] = now;
     }
 }

希尔排序

OI Wiki:希尔排序

小灰漫画:什么是希尔排序

算法思路

​ 希尔排序(英语:Shell sort),也称为缩小增量排序法,是 插入排序 的一种改进版本。希尔排序以它的发明者希尔(英语:Donald Shell)命名。

​ 排序对不相邻的记录进行比较和移动:

  1. 将待排序序列分为若干子序列(每个子序列的元素在原始数组中间距相同);
  2. 在子序列内进行插入排序;
  3. 减小每个子序列中元素之间的间距,重复上述过程直至间距减少为 1。

​ 分组间距,被称为希尔排序的增量,从数组大小的一半(len / 2)逐步折半的增量方法,是 Donald Shell 在发明希尔排序时提出的一种朴素方法,被称为希尔增量

稳定性

​ 希尔排序是一种不稳定的排序算法。

时间复杂度

​ 希尔排序的最优时间复杂度为 O(n)。

​ 希尔排序的平均时间复杂度和最坏时间复杂度与间距序列的选取(就是间距如何减小到 1)有关,比如「间距每次除以 k」的希尔排序的时间复杂度是 O(n^(k/2))。已知最好的最坏时间复杂度为 O(n(logn)^2)。

代码实现

// Java Version
/**
 * Shell 增量: 1、2、4、...、len / 2
 * 通项公式: 2^k
 * 最坏的时间复杂度依然是 O(n^2),有时甚至比直接使用插入排序还要慢。
 * 原因是每一轮希尔排序之间是等比的,导致希尔增量存在盲区。
 * @param arr 待排序的数组
 */
public void shellSort(int[] arr) {
   
   
    int len = arr.length;
    // divisor: 除数, interval: 间隔
    int divisor = 2, interval = len / 2;

    while (interval >= 1) {
   
   
        for (int i = interval; i < len; i++) {
   
   
            for (int j = i; j >= interval && arr[j] < arr[j - interval]; j -= interval) {
   
   
                swap(arr, j, j - interval);
            }
        }
        interval /= divisor;
    }
}
// Java Version
/**
 * Hibbard 增量: 1、3、7、...、
 * 通项公式: 2^k - 1
 * @param arr 待排序的数组
 */
public void shellSort2(int[] arr) {
   
   
    int len = arr.length;
    // divisor: 除数, interval: 间隔
    int interval = 1, k = 1;
    while (1 << k - 1 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quantum_Wu

一起加油呀ヾ(◍°∇°◍)ノ゙

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值