CF1151E(Number of Components,最大独立集)

首先了解最大团,团,最大完全子图,完全子图的定义

如下:最大团

补图的定义

  • 图G的补图,通俗的来讲就是完全图 K n K_{n} Kn去除 G G G的边集后得到的图 K n − G K_{n}-G KnG

  • 在图论里面,一个图G的补图(complement)或者反面(inverse)是一个图有着跟G相同的点,而且这些点之间有边相连当且仅当在G里面他们没有边相连

最大独立集的定义:

如下:

题意:

有m个人,n组询问,每次询问若为1,则可以将当前账户名字更改,若为2,则再输入一个人的名字,第一次输入一定为1,问最多能让多少个人开心(如果每次输入2后的那个人的名字和当前账户名字一样,那个人就是开心的)

思路:

可以将每个人名和一个数字对应,每两个1之间的人不可能同时开心(包括最后一个1后的人),那么在不可能同时开心的人之间连一条无向边,形成图G,问题就转化成了求无向图G中的最大点独立集的大小,而G的最大点独立集和G的补图中最大完全子图相同,就可以直接dfs将G补图的最大完全子图Q跑出来(图中只有40个点),答案就是Q的顶点数

#include <bits/stdc++.h>
using namespace std;
bool maps[45][45];//邻接矩阵,判断有没有边相连是O(1)的比较方便
vector<int> best;//当前最大团
vector<int> now;//当前尝试插入的团
int ans;
int n;//人数
//DFS求最大团
void dfs(int pos){
    if(pos==n+1){//所有的点都过了一遍,没有可插入的点了
        if(now.size()>best.size()){
            best=now;
            ans=1;
        } else if(now.size()==best.size()){
            best=now;
            ans++;
        }
        return;
    }
    bool flag=true;
    for(int i=0;i<now.size();i++){
        int nxt=now[i];
        if(!maps[pos][nxt]){
            flag=false;//该点和当前团内的点冲突,不能插入
            break;
        }
    }
    //剪枝,如果剩下的点全都加入也不能使最大团增大就退出
    if(now.size()+(n-pos)>=best.size()){
        if(flag){
            now.push_back(pos);
            dfs(pos+1);//尝试该点插入状态
            now.pop_back();
        }
        dfs(pos+1);//尝试该点未插入状态
    }
}

int main() {
    int m;//询问数 
    scanf("%d%d",&m,&n);
    int cnt = 0,opt;
    string s;
    map<string,int> ma;
    set<int> se;
    set<int>::iterator it1,it2;
    for(int i = 1;i <= n;++i)
        for(int j = 1;j <= n;++j)
            maps[i][j] = 1;
    for(int i = 1;i <= m;++i){
        scanf("%d",&opt);
        //每两个1之间的人不能同时开心
        if(opt == 1){
        	//求补图 
            for(it1 = se.begin(); it1 != se.end();++it1)
                for(it2 = se.begin(); it2 != se.end();++it2)
                        maps[*it1][*it2] = 0;
            se.clear();
        }
        else{
            cin >> s;
            if(ma.find(s) != ma.end())//找到了 
				se.insert(ma[s]);
            else{//没找到 
                ma[s] = ++cnt;
                se.insert(cnt);
            }
        }
    }
    //最后一个1后的人不能同时开心
    for(it1 = se.begin(); it1 != se.end();++it1)
        for(it2 = se.begin(); it2 != se.end();++it2)
                maps[*it1][*it2] = 0;
    dfs(1);
    cout<<best.size();
    return 0;
}
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页