蓝桥杯打水问题

N个人要打水,有M个水龙头,第i个人打水所需时间为Ti,请安排一个合理的方案使得所有人的等待时间之和尽量小。

提示
一种最佳打水方案是,将N个人按照Ti从小到大的顺序依次分配到M个龙头打水。
例如样例中,Ti从小到大排序为1,2,3,4,5,6,7,将他们依次分配到3个龙头,则去龙头一打水的为1,4,7;去龙头二打水的为2,5;去第三个龙头打水的为3,6。
第一个龙头打水的人总等待时间 = 0 + 1 + (1 + 4) = 6
第二个龙头打水的人总等待时间 = 0 + 2 = 2
第三个龙头打水的人总等待时间 = 0 + 3 = 3
所以总的等待时间 = 6 + 2 + 3 = 11

输入
第一行两个正整数N M 接下来一行N个正整数Ti。
N,M< =1000,Ti< =1000
输出
最小的等待时间之和。(不需要输出具体的安排方案)
样例输入

7 3
3 6 1 4 2 5 7

样例输出

11

#include<iostream>
#include<algorithm>
using namespace std;
int a[1000],b[1000];
int main(){
	int n,m,sum=0;
	cin>>n>>m;
	for(int i=0;i<n;i++){
		cin>>a[i];
	}
	sort(a,a+n);
	for(int i=0;i<n;i++){
		if(i<m){
			b[i]=0;
		}
		else{
			b[i]=a[i-m]+b[i-m];
			sum=sum+b[i];
		}
		}
		cout<<sum;
	}

©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页