Python+大数据-知行教育(一)-环境搭建 数据仓库

Python+大数据-知行教育(一)-环境搭建 数据仓库

1. 教育项目的数仓分层

回顾: 原有的基础分层

ODS层: 源数据层
	作用: 对接数据源, 和数据源的数据保持相同的粒度(将数据源的数据完整的拷贝到ODS层中)
	注意:
		如果数据来源于文本文件, 可能会需要先对这些文本文件进行预处理(spark)操作, 将其中不规则的数据, 不完整的数据, 脏乱差的数据先过滤掉, 将其转换为一份结构化的数据, 然后灌入到ODS层
DW层:  数据仓库层
	作用:  进行数据分析的操作
DA层:  数据应用层
	作用: 存储DW层分析的结果, 用于对接后续的应用(图表, 推荐系统...)

教育数仓中:

ODS层: 源数据层
	作用: 对接数据源, 和数据源的数据保持相同的粒度(将数据源的数据完整的拷贝到ODS层中)
	注意:
		如果数据来源于文本文件, 可能会需要先对这些文本文件进行预处理(spark)操作, 将其中不规则的数据, 不完整的数据, 脏乱差的数据先过滤掉, 将其转换为一份结构化的数据, 然后灌入到ODS层
	
	一般放置 事实表数据和少量的维度表数据
DW层:  数据仓库层
	DWD层: 明细层
		作用: 用于对ODS层数据进行清洗转换工作 , 以及进行少量的维度退化操作
				少量: 
					1) 将多个事实表的数据合并为一个事实表操作
					2) 如果维度表放置在ODS层 一般也是在DWD层完成维度退化
	DWM层: 中间层
		作用:  1) 用于进行维度退化操作  2) 用于进行提前聚合操作(周期快照事实表)
	DWS层: 业务层
		作用: 进行细化维度统计分析操作
DA层:  数据应用层
	作用: 存储基于DWS层再次分析的结果, 用于对接后续的应用(图表, 推荐系统...)
	例如:
		比如DWS层的数据表完成了基于订单表各项统计结果信息,  但是图表只需要其中销售额, 此时从DWS层将销售额的数据提取出来存储到DA层

DIM层: 维度层
	作用: 存储维度表数据


什么叫做维度退化: 是为了减少维度表的关联工作
	做法: 将数据分析中可能在维度表中需要使用的字段, 将这些字段退化到事实表中, 这样后续在基于维度统计的时候, 就不需要在关联维度表, 事实表中已经涵盖了维度数据了
	例如:	订单表, 原有订单表中只有用户id, 当我们需要根据用户维度进行统计分析的时候, 此时需要关联用户表, 找到用户的名称, 那么如果我们提前将用户的名称放置到订单表中, 那么是不是就不需要关联用户表, 而则就是维度退化
	
	好处: 减少后续分析的表关联情况
	弊端: 造成数据冗余

2. 数仓工具的使用

2.1 HUE相关的使用

​ HUE: hadoop 用户体验

​ 出现目的: 提升使用hadoop生态圈中相关软件便利性

​ 核心: 是将各类hadoop生态圈的软件的操作界面集成在一个软件中 (大集成者)

  • 如何HUE界面呢?

image-20221104155459218

image-20221104155540563

2.2 HUE操作OOZIE

什么是oozie:

	Oozie是一个用于管理Apache Hadoop作业的工作流调度程序系统。
	Oozie由Cloudera公司贡献给Apache的基于工作流引擎的开源框架,是用于Hadoop平台的开源的工作流调度引擎,是用来管理Hadoop作业,属于web应用程序,由Oozie client和Oozie Server两个组件构成,Oozie Server运行于Java Servlet容器(Tomcat)中的web程序。

什么是工作流呢?

	工作流(Workflow),指“业务过程的部分或整体在计算机应用环境下的自动化”。

能够使用工作流完成的业务一般具有什么特点呢?

1) 整个业务流程需要周期性重复干
2) 整个业务流程可以被划分为多个阶段
3) 每一个阶段存在依赖关系,前序没有操作, 后续也无法执行

如果发现实际生产中的某些业务满足了以上特征, 就可以尝试使用工作流来解决

请问, 大数据的工作流程是否可以使用工作流来解决呢? 完全可以的

image-20221104155608884

请问: 如何实现一个工作流呢? 已经有爱心人士将工作流软件实现了, 只需要学习如何使用这些软件配置工作流程即可

单独使用:
	azkaban: 来源于领英公司  配置工作流的方式是通过类似于properties文件的方式来配置, 只需要简单的几行即可配置,提供了一个非常的好可视化界面, 通过界面可以对工作流进行监控管理, 号称 只要能够被shell所执行, azkaban都可以进行调度, 所以azkaban就是一个shell客户端软件

	oozie: 来源于apache 出现时间较早一款工作流调度工具, 整个工作流的配置主要采用XML方式进行配置, 整个XML配置是非常繁琐的, 如果配置一个MR, 相当于将MR重写一遍, 而且虽然提供了一个管理界面, 但是这个界面仅能查看, 无法进行操作, 而且界面异常卡顿

总结:
	azkaban要比oozie更加好用
	

如何和HUE结合使用:
	azkaban由于不属于apache旗下, 所以无法和HUE集成
	hue是属于apache旗下的, 所以HUE像集成一款工作流的调度工具, 肯定优先集成自家产品
	ooize也是属于apache旗下的, HUE对oozie是可以直接集成的, 集成之后, 只需要用户通过鼠标的方式点一点即可实现工作流的配置
	
总结:
	hue加入后, oozie要比azkaban更加好用

oozie本质是将工作流翻译为MR程序来运行

2.3 sqoop相关的操作

​ sqoop是隶属于Apache旗下的, 最早是属于cloudera公司的,是一个用户进行数据的导入导出的工具, 主要是将关系型的数据库(MySQL, oracle…)导入到hadoop生态圈(HDFS,HIVE,Hbase…) , 以及将hadoop生态圈数据导出到关系型数据库中

image-20221104155636712

通过sqoop将数据导入到HIVE主要有二种方式: 原生API 和 hcatalog API

数据格式支持:
	原生API 仅支持 textFile格式
	hcatalog API 支持多种hive的存储格式(textFile ORC sequenceFile parquet...)

数据覆盖:
	原生API 支持数据覆盖操作
	hcatalog API 不支持数据覆盖,每一次都是追加操作

字段名:
	原生API: 字段名比较随意, 更多关注字段的顺序, 会将关系型数据库的第一个字段给hive表的第一个字段...
	hcatalog API: 按照字段名进行导入操作, 不关心顺序
	建议: 在导入的时候, 不管是顺序还是名字都保持一致

目前主要采用 hcatalog的方式

2.3.1 sqoop的基本操作
  • sqoop help 查看命令帮助文档

image-20221104155741290

  • qoop list-databases --help 查看某一个命令帮助文档
  • 如何查看mysql中有那些库呢?
命令:
	sqoop list-databases --connect jdbc:mysql://192.168.52.150:3306 --username root --password 123456

image-20221104160342513

  • 如何查看mysql中hue数据库下所有的表呢?
命令:
sqoop list-tables \
--connect jdbc:mysql://192.168.52.150:3306/hue \
--username root \
--password 123456 


注意:
	\ 表示当前命令没有写完, 换行书写

image-20221104160440553

2.3.2 sqoop的数据导入操作
  • 数据准备工作 : mysql中执行
create database test default character set utf8mb4 collate utf8mb4_unicode_ci;
use test;

create table emp
(
    id     int         not null
        primary key,
    name   varchar(32) null,
    deg    varchar(32) null,
    salary int         null,
    dept   varchar(32) null
);

INSERT INTO emp (id, name, deg, salary, dept) VALUES (1201, 'gopal', 'manager', 50000, 'TP');
INSERT INTO emp (id, name, deg, salary, dept) VALUES (1202, 'manisha', 'Proof reader', 50000, 'TP');
INSERT INTO emp (id, name, deg, salary, dept) VALUES (1203, 'khalil', 'php dev', 30000, 'AC');
INSERT INTO emp (id, name, deg, salary, dept) VALUES (1204, 'prasanth', 'php dev', 30000, 'AC');
INSERT INTO emp (id, name, deg, salary, dept) VALUES (1205, 'kranthi', 'admin', 20000, 'TP');

create table emp_add
(
    id     int         not null
        primary key,
    hno    varchar(32) null,
    street varchar(32) null,
    city   varchar(32) null
);

INSERT INTO emp_add (id, hno, street, city) VALUES (1201, '288A', 'vgiri', 'jublee');
INSERT INTO emp_add (id, hno, street, city) VALUES (1202, '108I', 'aoc', 'sec-bad');
INSERT INTO emp_add (id, hno, street, city) VALUES (1203, '144Z', 'pgutta', 'hyd');
INSERT INTO emp_add (id, hno, street, city) VALUES (1204, '78B', 'old city', 'sec-bad');
INSERT INTO emp_add (id, hno, street, city) VALUES (1205, '720X', 'hitec', 'sec-bad');

create table emp_conn
(
    id    int         not null
        primary key,
    phno  varchar(32) null,
    email varchar(32) null
);

INSERT INTO emp_conn (id, phno, email) VALUES (1201, '2356742', 'gopal@tp.com');
INSERT INTO emp_conn (id, phno, email) VALUES (1202, '1661663', 'manisha@tp.com');
INSERT INTO emp_conn (id, phno, email) VALUES (1203, '8887776', 'khalil@ac.com');
INSERT INTO emp_conn (id, phno, email) VALUES (1204, '9988774', 'prasanth@ac.com');
INSERT INTO emp_conn (id, phno, email) VALUES (1205, '1231231', 'kranthi@tp.com');
  • 第一个: 如何将数据从mysql中导入到HDFS中 (全量)
以emp表为例:

命令1:
sqoop import \
--connect jdbc:mysql://192.168.52.150:3306/test \
--username root \
--password 123456 \
--table emp

说明:
	默认情况下, 会将数据导入到操作sqoop用户的HDFS的家目录下,在此目录下会创建一个以导入表的表名为名称文件夹, 在此文件夹下莫每一条数据会运行一个mapTask, 数据的默认分隔符号为 逗号
	
思考: 是否更改其默认的位置呢?
sqoop import \
--connect jdbc:mysql://192.168.52.150:3306/test \
--username root \
--password 123456 \
--table emp \
--delete-target-dir \
--target-dir '/sqoop_works/emp_1'

思考: 是否调整map的数量呢?
sqoop import \
--connect jdbc:mysql://192.168.52.150:3306/test \
--username root \
--password 123456 \
--table emp \
--delete-target-dir \
--target-dir '/sqoop_works/emp_2' \
--split-by id \
-m 2 

思考: 是否调整默认分隔符号呢? 比如调整为 \001
sqoop import \
--connect jdbc:mysql://192.168.52.150:3306/test \
--username root \
--password 123456 \
--table emp \
--fields-terminated-by '\001' \
--delete-target-dir \
--target-dir '/sqoop_works/emp_3' \
-m 1 
  • 第二个: 全量导入数据到Hive中
以emp_add 表为例

第一步: 在HIVE中创建一个目标表
create database hivesqoop;
use hivesqoop;
create table hivesqoop.emp_add_hive(
	id  int,
	hno string,
	street string,
	city string
) 
row format delimited fields terminated by '\t'
stored as  orc ;

第二步: 通过sqoop完成数据导入操作
sqoop import \
--connect jdbc:mysql://192.168.52.150:3306/test \
--username root \
--password 123456 \
--table emp_add \
--hcatalog-database hivesqoop \
--hcatalog-table emp_add_hive \
-m 1 
  • 第三个: 如何进行条件导入到HDFS中
-- 以emp 表为例

方式一: 通过 where的方式
sqoop import \
--connect jdbc:mysql://192.168.52.150:3306/test \
--username root \
--password 123456 \
--table emp \
--where 'id > 1205' \
--delete-target-dir \
--target-dir '/sqoop_works/emp_2' \
--split-by id \
-m 2 

方式二: 通过SQL的方式
sqoop import \
--connect jdbc:mysql://192.168.52.150:3306/test \
--username root \
--password 123456 \
--query 'select deg  from emp where 1=1 AND \$CONDITIONS' \
--delete-target-dir \
--target-dir '/sqoop_works/emp_4' \
--split-by id \
-m 1 

注意: 
	如果SQL语句使用 双引号包裹,  $CONDITIONS前面需要将一个\进行转义, 单引号是不需要的
  • 第四个: 如何通过条件的方式导入到hive中 (后续模拟增量导入数据)
-- 以 emp_add

sqoop import \
--connect jdbc:mysql://192.168.52.150:3306/test \
--username root \
--password 123456 \
--table emp_add \
--where 'id > 1205' \
--hcatalog-database hivesqoop \
--hcatalog-table emp_add_hive \
-m 1 

或者:
sqoop import \
--connect jdbc:mysql://192.168.52.150:3306/test \
--username root \
--password 123456 \
--query 'select * from emp_add where id>1205 and $CONDITIONS'
--hcatalog-database hivesqoop \
--hcatalog-table emp_add_hive \
-m 1 
2.3.3 sqoop的数据导出操作

需求: 将hive中 emp_add_hive 表数据导出到MySQL中

# 第一步: 在mysql中创建目标表 (必须创建)
create table test.emp_add_mysql(
	id     INT  ,
    hno    VARCHAR(32) NULL,
    street VARCHAR(32) NULL,
    city   VARCHAR(32) NULL
);

# 第二步: 执行sqoop命令导出数据
sqoop export \
--connect jdbc:mysql://192.168.52.150:3306/test \
--username root \
--password 123456 \
--table emp_add_mysql \
--hcatalog-database hivesqoop \
--hcatalog-table emp_add_hive \
-m 1 


存在问题: 如果hive中表数据存在中文, 通过上述sqoop命令, 会出现中文乱码的问题
2.3.4 sqoop相关常用参数
参数说明
–connect连接关系型数据库的URL
–username连接数据库的用户名
–password连接数据库的密码
–driverJDBC的driver class
–query或–e 将查询结果的数据导入,使用时必须伴随参–target-dir,–hcatalog-table,如果查询中有where条件,则条件后必须加上 C O N D I T I O N S 关键字。如果使用双引号包含 s q l ,则 CONDITIONS关键字。 如果使用双引号包含sql,则 CONDITIONS关键字。如果使用双引号包含sql,则CONDITIONS前要加上\以完成转义:$CONDITIONS
–hcatalog-database指定HCatalog表的数据库名称。如果未指定,default则使用默认数据库名称。提供 --hcatalog-database不带选项–hcatalog-table是错误的。
–hcatalog-table此选项的参数值为HCatalog表名。该–hcatalog-table选项的存在表示导入或导出作业是使用HCatalog表完成的,并且是HCatalog作业的必需选项。
–create-hcatalog-table此选项指定在导入数据时是否应自动创建HCatalog表。表名将与转换为小写的数据库表名相同。
–hcatalog-storage-stanza ‘stored as orc tblproperties (“orc.compress”=“SNAPPY”)’ \建表时追加存储格式到建表语句中,tblproperties修改表的属性,这里设置orc的压缩格式为SNAPPY
-m指定并行处理的MapReduce任务数量。 -m不为1时,需要用split-by指定分片字段进行并行导入,尽量指定int型。
–split-by id如果指定-split by, 必须使用$CONDITIONS关键字, 双引号的查询语句还要加\
–hcatalog-partition-keys --hcatalog-partition-valueskeys和values必须同时存在,相当于指定静态分区。允许将多个键和值提供为静态分区键。多个选项值之间用,(逗号)分隔。比如: --hcatalog-partition-keys year,month,day --hcatalog-partition-values 1999,12,31
–null-string ‘\N’ --null-non-string ‘\N’指定mysql数据为空值时用什么符号存储,null-string针对string类型的NULL值处理,–null-non-string针对非string类型的NULL值处理
–hive-drop-import-delims设置无视字符串中的分割符(hcatalog默认开启)
–fields-terminated-by ‘\t’设置字段分隔符
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值