1,题目描述:
根据多边形内角和定理,正多边形内角和等于:( n - 2 )× 180 ° (n 大于等于 3 且 n 为整数)(如下图所示是三角形、四边形、五边形、六边形的形状)
请根据正多边形的边数,计算该正多边形每个内角的度数。(结果保留 1 位小数)

2,注意:输出是小数
3,分析:
已知:正方形的边数 n 和总的内角和sum
其中内角和通过公式:sum = (n-2)*180得知
求:单个的内角度数
单个内角度数 a = 总的内角和 sum 除以 边的个数n
但因为得出的 a 是小数,而边的个数 n 是整数,所以 n 要先除以1.0变成小数;之后再被 总的内角和 sum 除以
a = sum/(n/1.0);
4,总代码:
#include<bits/stdc++.h>
using namespace std;
int main

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



