连续型随机变量及其概率密度(习题部分)

例一·测量电压

设在一电路中,电阻两喘的电压(V)服从 N ( 120 , 2 2 ) . N(120,2^2). N(120,22).今独立测量了 5 5 5次,试确定有 2 2 2次测定值落在区间 [ 118 , 122 ] [118,122] [118,122]之外的概率.

思路

设第 i i i次的测量值为 X i X_i Xi i = 1 , 2 , 3 , 4 , 5 , i=1,2,3,4,5, i=1,2,3,4,5, X i ∼ N ( 120 , 2 2 ) X_i \sim N(120,2^2) XiN(120,22),代入公式得 P { 118 ⩽ X i ⩽ 122 } = Φ ( 122 − 120 2 ) − Φ ( 118 − 120 2 ) = Φ ( 1 ) − Φ ( − 1 ) = 2 Φ ( 1 ) − 1 = 0 , 6826 P { X i ∉ [ 118 , 122 ] } = 1 − P { 118 ⩽ X ⩽ 122 } = 0.3174 , i = 1 , 2 , 3 , 4 , 5 \begin{array}{l} P\left\{118 \leqslant X_{i} \leqslant 122\right\}=\Phi\left(\frac{122-120}{2}\right)-\Phi\left(\frac{118-120}{2}\right) \\ \quad=\Phi(1)-\Phi(-1)=2 \Phi(1)-1=0,6826 \\ P\left\{X_{i} \notin[118,122]\right\}=1-P\{118 \leqslant X \leqslant 122\}=0.3174, i=1,2,3,4,5 \end{array} P{118Xi122}=Φ(2122120)Φ(2118120)=Φ(1)Φ(1)=2Φ(1)1=0,6826P{Xi/[118,122]}=1P{118X122}=0.3174,i=1,2,3,4,5
因各个 X i X_i Xi相互独立,故用 Y Y Y表示 5 5 5次测量其测量值 X i X_i Xi落在区间 [ 118 , 122 ] [118,122] [118,122]之外的个数,则 Y ∼ b ( 5 , 0.3174 ) Y \sim b(5,0.3174) Yb(5,0.3174)
代入公式得 P { Y = 2 } = ( 5 2 ) ( 0.3174 ) 2 ( 0.6826 ) 3 = 0.3204 P\{Y=2\}=\left(\begin{array}{l} 5 \\ 2 \end{array}\right)(0.3174)^{2}(0.6826)^{3}=0.3204 P{Y=2}=(52)(0.3174)2(0.6826)3=0.3204

例二·等待指示灯的时间

某人上班,自家里去办公楼要经过一交通指示灯,这一指示灯有80%时间亮红灯,此时他在指示灯旁等待直至绿灯亮,等待时间在区间 [ 0 , 30 ] [0,30] [0,30](以秒计)服从均匀分布.以X表示他的等待时间.求X的分布函数F(x),并问X是否为连续型随机变量,是否为离散型的? (要说明理由)

思路

当他到达交通 指示灯处时,若是亮绿灯,则等待时间X为零,亮红灯则等待时间X服从均匀分布.记A为事件“指示灯亮绿灯”,对于固定的x≥0,由全概率公式有 P { X ⩽ x } = P { X ⩽ x ∣ A } P ( A ) + P { X ⩽ x ∣ A ˉ ⟩ P ( A ˉ ) P\{X \leqslant x\}=P\{X \leqslant x | A\} P(A)+P\{X \leqslant x|\bar{A}\rangle P(\bar{A}) P{Xx}=P{XxA}P(A)+P{XxAˉP(Aˉ)
其 中 P { X ⩽ x ∣ A } = 1 , P { X ⩽ x ∣ A ˉ } = x 30 ( 当 0 ⩽ x ⩽ 30 ) , P ( X ⩽ x ∣ A ˉ ) = 其中P\{X \leqslant x | A\}=1, P\{X \leqslant x | \bar{A}\}=\frac{x}{30}(当0 \leqslant x \leqslant 30), P(X \leqslant x | \bar{A})= P{XxA}=1,P{XxAˉ}=30x(0x30),P(XxAˉ)=
1 ( 当 x > 30 ) , 由 P ( A ) = 0.2 得 到 1(当 x>30), 由P(A)=0.2 得到 1(x>30),P(A)=0.2
P { X ⩽ x } = 1 × 0.2 + x 30 × 0.8 = 0.2 + 0.8 x 30 ( 当 0 ⩽ x ⩽ 30 ) P\{X \leqslant x\}=1 \times 0.2+\frac{x}{30} \times 0.8=0.2+\frac{0.8 x}{30}(当0 \leqslant x \leqslant 30) P{Xx}=1×0.2+30x×0.8=0.2+300.8x(0x30)
P { X ⩽ x } = 1 × 0 , 2 + 1 × 0.8 = 1 ( 当 x > 30 ) P\{X \leqslant x\}=1 \times 0,2+1 \times 0.8=1 \quad\left(当 x>30\right) P{Xx}=1×0,2+1×0.8=1(x>30)
于 是 得 到 X 的 分 布 函 数 于是得到X的分布函数 X F ( x ) = P { X ⩽ x } = { 0 , x < 0 0.2 + 0.8 x 30 , 0 ⩽ x < 30 1 , x ⩾ 30 F(x)=P\{X \leqslant x\}=\left\{\begin{array}{ll}0, & x<0 \\ 0.2+\frac{0.8 x}{30}, & 0 \leqslant x<30 \\ 1, & x \geqslant 30\end{array}\right. F(x)=P{Xx}=0,0.2+300.8x,1,x<00x<30x30

例三·求概率密度

X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1),求 Y = e X Y=e^X Y=eX的概率密度.

思路

因为 Y = e X Y=e^X Y=eX大于0,故当 y < 0 y<0 y<0时, f Y ( y ) = 0 f_Y(y)=0 fY(y)=0;当 y > 0 y>0 y>0时,注意到 X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1),因而可以求出 Y Y Y的分布函数为 F Y ( y ) = P { Y ⩽ y } = P { 0 < Y ⩽ y } = P { 0 < e x ⩽ y } − P { − ∞ < X ⩽ ln ⁡ y } = Φ ( ln ⁡ y ) \begin{aligned} &F_{Y}(y)=P\{Y \leqslant y\}=P\{0<Y \leqslant y\}=P\left\{0<\mathrm{e}^{x} \leqslant y\right\}\\ &-P\{-\infty<X \leqslant \ln y\}=\Phi(\ln y) \end{aligned} FY(y)=P{Yy}=P{0<Yy}=P{0<exy}P{<Xlny}=Φ(lny)
进而求得
f Y ( y ) = d d y F Y ( y ) = d d x Φ ( x ) ∣ x = ln ⁡ y ⋅ 1 y = 1 2 π e − 1 2 ( ln ⁡ y ) 2 ⋅ 1 y f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\left.\frac{d}{d x} \Phi(x)\right|_{x=\ln y} \cdot \frac{1}{y}=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(\ln y)^{2}} \cdot \frac{1}{y} fY(y)=dydFY(y)=dxdΦ(x)x=lnyy1=2π 1e21(lny)2y1
于是, Y = e X Y=e^X Y=eX的概率密度为 f Y ( y ) = { 1 2 π y e − 1 2 ( ln ⁡ y ) 2 ⋅ , y > 0 0 , 其 他 f_{Y}(y)=\left\{\begin{array}{ll} \frac{1}{\sqrt{2 \pi} y} \mathrm{e}^{-\frac{1}{2}(\ln y)^{2}} \cdot, & y>0 \\ 0, & 其他 \end{array}\right. fY(y)={2π y1e21(lny)2,0,y>0

例四·使用引理求概率密度

设随机变量 X X X的概率密度为 f ( x ) = { e − x , x > 0 0 , 其 他 f(x)=\left\{\begin{array}{ll} e^{-x}, & x>0 \\ 0, & 其他 \end{array}\right. f(x)={ex,0,x>0
Y = X 2 Y=X^2 Y=X2的概率密度.

思路

Y = X 2 Y=X^2 Y=X2,即有 y = g ( x ) = x 2 y=g(x)=x^2 y=g(x)=x2,在 x > 0 x>0 x>0时, g ( x ) g(x) g(x)单调递增,具有反函数 x = h ( y ) = y 1 / 2 x=h(y)=y^{1/2} x=h(y)=y1/2,又有 h ′ ( y ) = 1 2 y − 1 / 2 h^{\prime}(y)=\frac{1}{2} y^{-1 / 2} h(y)=21y1/2由课本引理得 Y = X 2 Y=X^2 Y=X2的概率密度为 f Y ( y ) = { 1 2 y e − y , y > 0 0 , 其 他 f_{Y}(y)=\left\{\begin{array}{ll} \frac{1}{2 \sqrt{y}} e^{-\sqrt{y}}, & y>0 \\ 0, & 其他 \end{array}\right. fY(y)={2y 1ey ,0,y>0

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
二维连续型随机变量是指有两个随机变量 $X$ 和 $Y$,它们可以取到的值是连续的。它们的联合概率密度函数(Joint Probability Density Function,简称联合概率密度)是 $f_{X,Y}(x,y)$,表示同时取到 $X=x$ 和 $Y=y$ 的概率密度。 在二维连续型随机变量,我们经常需要计算一些概率和期望值。其,联合概率密度函数的积分可以得到概率: $$ P(a\leq X\leq b, c\leq Y\leq d)=\int_a^b\int_c^d f_{X,Y}(x,y)dydx $$ 同时,我们也可以计算 $X$ 和 $Y$ 的边缘概率密度函数(Marginal Probability Density Function)。分别为: $$ f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy $$ $$ f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx $$ 边缘概率密度函数是联合概率密度函数在某个维度上的积分。它们分别表示 $X$ 和 $Y$ 单独取到某个值的概率密度。 此外,我们还可以计算 $X$ 和 $Y$ 的协方差(Covariance)和相关系数(Correlation Coefficient)。它们分别为: $$ Cov(X,Y) = E[(X-E(X))(Y-E(Y))] $$ $$ \rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} $$ 其,$E(X)$ 和 $E(Y)$ 分别是 $X$ 和 $Y$ 的期望值,$Var(X)$ 和 $Var(Y)$ 分别是 $X$ 和 $Y$ 的方差。协方差和相关系数可以用来描述 $X$ 和 $Y$ 之间的关系,其相关系数的取值范围在 $[-1,1]$ 之间。如果 $\rho_{X,Y} > 0$,则 $X$ 和 $Y$ 为正相关;如果 $\rho_{X,Y} < 0$,则 $X$ 和 $Y$ 为负相关;如果 $\rho_{X,Y} = 0$,则 $X$ 和 $Y$ 为不相关。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值