HDU 2057 关于十六进制计算的问题

本文介绍了一种使用C语言进行十六进制加法的方法,避免了将十六进制转换为十进制的繁琐步骤。通过直接在十六进制下进行计算,然后输出结果,特别注意了负数和补码的处理。

题目:
在这里插入图片描述
在这里插入图片描述
最开始是打算把输入的十六进制的数字转换为十进制,再求和,后再把和转化为十六进制,太过于麻烦,其实C语言是可以直接进行十六进制的计算,只是不能直接输出负数(和补码,反码有关)需要自己进行一次转换,因为题目给出的A,B都是15位以内的16进制数,因为4个二进制位表示一个十六进制的数字,则A,B都需要定义为16位的整形(__int64可以实现定义位64的整形数字),其中表示和的变量也要定义为64位的整数。
AC的代码:

#include<stdio.h>
#include<math.h>
int main(void)
{
 __int64  n1,n2;
 while(~scanf("%I64X %I64X",&n1,&n2))
 {
  __int64 sum=n1+n2;
  if(sum<0)
  {
   sum=-sum;
   printf("-%I64X\n",sum);
  }
  else if(sum>=0)
  {
   printf("%I64X\n",sum);
  }
 }
 return 0;
 } 
内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值