射影几何
射影变换的性质
- 保持直线性:射影变换保留直线,即直线映射后的图像仍然是直线。
- 不保留形状、长度、角度、距离:例如,圆可能被映射为椭圆,长度与角度可能会改变。
射影几何的引入
- 欧氏几何的局限性:平行线不相交的问题导致例外情况。
- 无穷远点的引入:通过在平行线交点处添加“理想点”,扩展欧氏空间为射影空间。
- 射影空间的优势:所有直线(包括原本平行的直线)都相交,使几何推理更加统一与简洁。(大一统的魅力!!!)
射影空间的意义
- 作为欧氏空间的扩展,提供了一种更一般化的几何框架,简化了许多几何推理。
齐次坐标的定义
-
在二维欧氏空间,点 ( x , y ) (x, y) (x,y) 可用三元组 ( x , y , λ ) (x, y, \lambda) (x,y,λ) 表示,其中 λ ≠ 0 \lambda \neq 0 λ=0。
-
两个坐标三元组 ( x , y , λ ) (x, y, \lambda) (x,y,λ) 和 ( k x , k y , k λ ) (kx, ky, k\lambda) (kx,ky,kλ)( k ≠ 0 k \neq 0 k=0)表示同一点,形成一个等价类。(数学概念)
-
通过归一化(即除以 λ \lambda λ),可以恢复原始坐标 ( x , y ) (x, y) (x,y):
( x , y , λ ) → ( x λ , y λ ) \left( x, y, \lambda \right) \to \left( \frac{x}{\lambda}, \frac{y}{\lambda} \right) (x,y,λ)→(λx,λy)
** 无穷远点的引入**
- 当齐次坐标的最后一个分量 λ = 0 \lambda = 0 λ=0 时,无法归一化(不能除0),得到的点在无穷远处。
- 这些点称为无穷远点,用于扩展欧氏空间到射影空间。
射影空间的构造
-
通过齐次坐标扩展 R n \mathbb{R}^n Rn 到射影空间 P n \mathbb{P}^n Pn。(欧式空间到射影空间)
-
二维射影空间中的无穷远点形成一条无穷远直线:
{ ( x , y , 0 ) ∣ x , y ∈ R } \{ (x, y, 0) \mid x, y \in \mathbb{R} \} {(x,y,0)∣x,y∈R}
-
三维射影空间中的无穷远点构成一个无穷远平面:
{ ( x , y , z , 0 ) ∣ x , y , z ∈ R } \{ (x, y, z, 0) \mid x, y, z \in \mathbb{R} \} {(x,y,z,0)∣x,y,z∈R}
射影空间的意义
- 统一了有限点和无穷远点,使几何结构更加对称和简洁。
- 使欧氏几何中的某些特殊情况(如平行线不相交)得到自然处理。
齐次性的概念
- 在欧氏几何中,所有点是等价的,空间是齐次的,即没有特殊的点。(如何理解空间是齐次的:齐次性意味着空间在任何地方看起来都是一样的,没有特殊的"绝对位置"。换句话说,空间的物理定律和性质与位置无关。)
- 坐标系的选择会人为地引入一个原点,但原点的选择是任意的。
- 欧氏变换(包括平移和旋转)保持空间的齐次性。
仿射变换
- 由线性变换和欧氏变换(即平移、旋转、缩放)组成。
- 无穷远点保持在无穷远,作为一个整体被保留。
** 射影几何的均匀性**
- 在射影空间中,无穷远点与普通点无区别,整个空间仍然是齐次的。
- 无穷远点的坐标形式(最后坐标为零)只是坐标系选择的结果。
射影变换
-
射影空间中的变换由非奇异矩阵(可逆矩阵:非奇异矩\可逆矩阵阵代表一个可逆的线性变换,它不会改变空间的维度,可以将一个向量映射到另一个向量,且映射是可逆的)作用于齐次坐标向量:
X ′ = H X X' = H X X′=HX -
不同于欧氏和仿射变换,射影变换可以将无穷远点映射到有限点,反之亦然(vice versa,煮啵新学的短语,嘿嘿!)。
计算机视觉中的应用
- 三维世界 → \to → 三维射影空间,便于表示和计算。
- 图像 → \to → 二维射影空间,用于处理投影关系。
- 无穷远点的现实意义:虽然真实世界没有无穷远点,但在计算时需要特别处理无穷远直线(图像中)和无穷远平面(真实世界中)。
- 在实践中,尽管射影几何理论上所有点等价,但在某些情况下,仍需特殊关注无穷远直线和平面以解决实际问题。