002射影几何

射影几何

射影变换的性质

  • 保持直线性:射影变换保留直线,即直线映射后的图像仍然是直线。
  • 不保留形状、长度、角度、距离:例如,圆可能被映射为椭圆,长度与角度可能会改变。

射影几何的引入

  • 欧氏几何的局限性:平行线不相交的问题导致例外情况。
  • 无穷远点的引入:通过在平行线交点处添加“理想点”,扩展欧氏空间为射影空间。
  • 射影空间的优势:所有直线(包括原本平行的直线)都相交,使几何推理更加统一与简洁。(大一统的魅力!!!)

射影空间的意义

  • 作为欧氏空间的扩展,提供了一种更一般化的几何框架,简化了许多几何推理。

齐次坐标的定义

  • 在二维欧氏空间,点 ( x , y ) (x, y) (x,y) 可用三元组 ( x , y , λ ) (x, y, \lambda) (x,y,λ) 表示,其中 λ ≠ 0 \lambda \neq 0 λ=0

  • 两个坐标三元组 ( x , y , λ ) (x, y, \lambda) (x,y,λ) ( k x , k y , k λ ) (kx, ky, k\lambda) (kx,ky,) k ≠ 0 k \neq 0 k=0)表示同一点,形成一个等价类。(数学概念)

  • 通过归一化(即除以 λ \lambda λ),可以恢复原始坐标 ( x , y ) (x, y) (x,y)

    ( x , y , λ ) → ( x λ , y λ ) \left( x, y, \lambda \right) \to \left( \frac{x}{\lambda}, \frac{y}{\lambda} \right) (x,y,λ)(λx,λy)

** 无穷远点的引入**

  • 当齐次坐标的最后一个分量 λ = 0 \lambda = 0 λ=0 时,无法归一化(不能除0),得到的点在无穷远处。
  • 这些点称为无穷远点,用于扩展欧氏空间到射影空间。

射影空间的构造

  • 通过齐次坐标扩展 R n \mathbb{R}^n Rn 到射影空间 P n \mathbb{P}^n Pn。(欧式空间到射影空间)

  • 二维射影空间中的无穷远点形成一条无穷远直线

    { ( x , y , 0 ) ∣ x , y ∈ R } \{ (x, y, 0) \mid x, y \in \mathbb{R} \} {(x,y,0)x,yR}

  • 三维射影空间中的无穷远点构成一个无穷远平面
    { ( x , y , z , 0 ) ∣ x , y , z ∈ R } \{ (x, y, z, 0) \mid x, y, z \in \mathbb{R} \} {(x,y,z,0)x,y,zR}

射影空间的意义

  • 统一了有限点和无穷远点,使几何结构更加对称和简洁。
  • 使欧氏几何中的某些特殊情况(如平行线不相交)得到自然处理。

齐次性的概念

  • 欧氏几何中,所有点是等价的,空间是齐次的,即没有特殊的点。(如何理解空间是齐次的:齐次性意味着空间在任何地方看起来都是一样的,没有特殊的"绝对位置"。换句话说,空间的物理定律和性质与位置无关。)
  • 坐标系的选择会人为地引入一个原点,但原点的选择是任意的。
  • 欧氏变换(包括平移和旋转)保持空间的齐次性。

仿射变换

  • 线性变换欧氏变换(即平移、旋转、缩放)组成。
  • 无穷远点保持在无穷远,作为一个整体被保留。

** 射影几何的均匀性**

  • 射影空间中,无穷远点与普通点无区别,整个空间仍然是齐次的。
  • 无穷远点的坐标形式(最后坐标为零)只是坐标系选择的结果。

射影变换

  • 射影空间中的变换由非奇异矩阵(可逆矩阵:非奇异矩\可逆矩阵阵代表一个可逆的线性变换,它不会改变空间的维度,可以将一个向量映射到另一个向量,且映射是可逆的)作用于齐次坐标向量:
    X ′ = H X X' = H X X=HX

  • 不同于欧氏和仿射变换,射影变换可以将无穷远点映射到有限点,反之亦然(vice versa,煮啵新学的短语,嘿嘿!)。

计算机视觉中的应用

  • 三维世界 → \to 三维射影空间,便于表示和计算。
  • 图像 → \to 二维射影空间,用于处理投影关系。
  • 无穷远点的现实意义:虽然真实世界没有无穷远点,但在计算时需要特别处理无穷远直线(图像中)和无穷远平面(真实世界中)。
  • 在实践中,尽管射影几何理论上所有点等价,但在某些情况下,仍需特殊关注无穷远直线和平面以解决实际问题。
内容概要:本文详细介绍了文生视频大模型及AI人应用方案的设计与实现。文章首先阐述了文生视频大模型的技术基础,包括深度生成模型、自然语言处理(NLP)和计算机视觉(CV)的深度融合,以及相关技术的发展趋势。接着,文章深入分析了需求,包括用户需求、市场现状和技术需求,明确了高效性、个性化和成本控制等关键点。系统架构设计部分涵盖了数据层、模型层、服务层和应用层的分层架构,确保系统的可扩展性和高效性。在关键技术实现方面,文章详细描述了文本解析与理解、视频生成技术、AI人交互技术和实时处理与反馈机制。此外,还探讨了数据管理与安全、系统测试与验证、部署与维护等重要环节。最后,文章展示了文生视频大模型在教育、娱乐和商业领域的应用场景,并对其未来的技术改进方向和市场前景进行了展望。 适用人群:具备一定技术背景的研发人员、产品经理、数据科学家以及对AI视频生成技术感兴趣的从业者。 使用场景及目标:①帮助研发人员理解文生视频大模型的技术实现和应用场景;②指导产品经理在实际项目中应用文生视频大模型;③为数据科学家提供技术优化和模型改进的思路;④让从业者了解AI视频生成技术的市场潜力和发展趋势。 阅读建议:本文内容详尽,涉及多个技术细节和应用场景,建议读者结合自身的专业背景和技术需求,重点阅读与自己工作相关的章节,并结合实际项目进行实践和验证。
内容概要:《智慧教育应用发展研究报告(2025年)》由中国信息通信研究院发布,全面梳理了全球及我国智慧教育的发展现状和趋势。报告指出,智慧教育通过多种数字技术促进教育模式、管理模式和资源生成等方面的变革。国外经济体如欧盟、美国、韩国和日本纷纷通过顶层设计推动智慧教育发展,而我国则通过政策支持、基础设施建设、技术融合等多方面努力,推动智慧教育进入“快车道”。智慧教育应用场景分为智慧校园和校外教育两类,涵盖教学、考试、评价、管理和服务等多个方面。报告还详细分析了支撑智慧教育发展的技术、产业、基础设施和安全能力的发展趋势,并指出了当前面临的挑战及建议。 适用人群:教育领域的政策制定者、教育管理者、教育技术从业者、研究人员和关心教育发展的社会各界人士。 使用场景及目标:①了解全球及我国智慧教育的最新进展和趋势;②为政策制定者提供决策参考;③为教育管理者和技术从业者提供实施智慧教育的具体指导;④促进教育技术的研发和应用。 其他说明:报告强调了智慧教育在促进教育公平、提升教育质量、推动教育模式创新等方面的重要性,并呼吁加强跨领域协同攻关、缩小教育数字化差距、强化网络信息安全和提升教师数字素养,以应对当前面临的挑战。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值