题目 数字加密
本题要求实现一种数字加密方法。首先固定一个加密用正整数 A,对任一正整数 B,将其每 1 位数字与 A 的对应位置上的数字进行以下运算:对奇数位,对应位的数字相加后对 13 取余——这里用 J 代表 10、Q 代表 11、K 代表 12;对偶数位,用 B 的数字减去 A 的数字,若结果为负数,则再加 10。这里令个位为第 1 位。
输入格式:
输入在一行中依次给出 A 和 B,均为不超过 100 位的正整数,其间以空格分隔。
输出格式:
在一行中输出加密后的结果。
输入样例:
1234567 368782971
输出样例:
3695Q8118
分析
这道题思路不难,但着着实实踩了几个坑。
首先是加密的时候,长度不一致需要补零。也就是说不管是A长还是B长都要把另一个的不足空位当成0加入运算。
然后还有一个是第一个奇数位是最低位(这个也是我没注意看题gg),这样的话算开头第一位是奇数偶数直接根据长度算就行。
代码
#include <iostream>
#include <string>
#include<vector>
#include <algorithm>
using namespace std;
void change(int n)
{
if (n <= 9) cout << n;

本文介绍了PTA乙级题目1048的数字加密方法,通过固定加密正整数A,对每个输入正整数B的奇偶位进行特定运算。文章分析了题目要求,指出了解题过程中需要注意的长度一致性和首位位数问题,并提供了实现代码。
最低0.47元/天 解锁文章

956

被折叠的 条评论
为什么被折叠?



