yolov8在云服务器训练自己的数据集

第一步:创建自己的云服务器实例

1.打开一个提供云服务器的平台,这里以蓝耘GPU智算云平台为例蓝耘GPU智算云平台 (lanyun.net),在容器云市场根据需要的显卡选择一个服务器(地区无所谓,随便选),点击立即购买。

2.选择一个主机

然后划到最下面选择框架,选PyTorch,版本可以按自己需求选择

然后点立即购买

 

第二步:打开实例

1.将实例开机,开机成功后就是这样的

2.点击快捷工具JupyterLab

3.打开JupyterLab就是这样的

第三步:安装FinalShell(因为JupterLab只能上传单个文件,利用FinalShell后面可以直接正规上传我们的数据集),连接服务器,安装可以看Windows系统FinalShell的下载、安装及基本使用_finalshell 下载-CSDN博客

1.连接服务器

 2.复制SSH信息

将复制的内容粘贴到备注里面,方便我们复制,内容里@后面的内容是主机,前面的数字是端口号,root是用户名。

密码在这复制

名称可以自行命名,这里就命名为v8-lab1 

然后点击确定,就连接上了.然后双击,就打开了。

点击接受并保存

第四步:下载yolov8文件,配置环境

1.进入autodl-tmp文件,一般都把所有实验文件放在这个文件夹,然后打开终端

(如果下载ultralytics出现这样的错误Could not find a version that satisfies the requirement,请参考最后)

新建一个python文件,用来训练代码

训练文件train.py的代码只需要修改这3个地方

第五步:上传数据集,修改数据集配置文件,训练数据

1.将yolo格式的数据集上传,我是上传到这里的。数据集hanjie2里面包括images和labels两个文件夹,images文件夹里面包括train文件和val文件,就是训练的图片和验证的图片。labels也包括train文件和val文件,训练的标签和验证的标签。

2.数据集的配置文件放在这里的,配置文件里面注意路径

第六步:开始训练:

进入终端,进入目标ultralytics,然后直接python train.py,就可以开始训练了。训练结果如下

完成。

注:如果在pip install ultralytics出现这样的问题

Could not find a version that satisfies the requirement

我是这样解决的,在创建实例的时候,不选择pytorch,选择miniconda

然后进入终端的时候创建一个虚拟环境,通过conda create  --name myev python=3.8,创建了一个叫myev的虚拟环境,然后进入虚拟环境,我这里已经创建过虚拟环境了,就直接进入了

然后你通过conda去下载ultralytics的包,就可以正常下载了,不过记住,最后python train.py

训练的时候也要在创建的虚拟环境中,不然会报错。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值