第一步:创建自己的云服务器实例
1.打开一个提供云服务器的平台,这里以蓝耘GPU智算云平台为例蓝耘GPU智算云平台 (lanyun.net),在容器云市场根据需要的显卡选择一个服务器(地区无所谓,随便选),点击立即购买。
2.选择一个主机
然后划到最下面选择框架,选PyTorch,版本可以按自己需求选择
然后点立即购买
第二步:打开实例
1.将实例开机,开机成功后就是这样的
2.点击快捷工具JupyterLab
3.打开JupyterLab就是这样的
第三步:安装FinalShell(因为JupterLab只能上传单个文件,利用FinalShell后面可以直接正规上传我们的数据集),连接服务器,安装可以看Windows系统FinalShell的下载、安装及基本使用_finalshell 下载-CSDN博客
1.连接服务器
2.复制SSH信息
将复制的内容粘贴到备注里面,方便我们复制,内容里@后面的内容是主机,前面的数字是端口号,root是用户名。
密码在这复制
名称可以自行命名,这里就命名为v8-lab1
然后点击确定,就连接上了.然后双击,就打开了。
点击接受并保存
第四步:下载yolov8文件,配置环境
1.进入autodl-tmp文件,一般都把所有实验文件放在这个文件夹,然后打开终端
(如果下载ultralytics出现这样的错误Could not find a version that satisfies the requirement,请参考最后)
新建一个python文件,用来训练代码
训练文件train.py的代码只需要修改这3个地方
第五步:上传数据集,修改数据集配置文件,训练数据
1.将yolo格式的数据集上传,我是上传到这里的。数据集hanjie2里面包括images和labels两个文件夹,images文件夹里面包括train文件和val文件,就是训练的图片和验证的图片。labels也包括train文件和val文件,训练的标签和验证的标签。
2.数据集的配置文件放在这里的,配置文件里面注意路径
第六步:开始训练:
进入终端,进入目标ultralytics,然后直接python train.py,就可以开始训练了。训练结果如下
完成。
注:如果在pip install ultralytics出现这样的问题
Could not find a version that satisfies the requirement
我是这样解决的,在创建实例的时候,不选择pytorch,选择miniconda
然后进入终端的时候创建一个虚拟环境,通过conda create --name myev python=3.8,创建了一个叫myev的虚拟环境,然后进入虚拟环境,我这里已经创建过虚拟环境了,就直接进入了
然后你通过conda去下载ultralytics的包,就可以正常下载了,不过记住,最后python train.py
训练的时候也要在创建的虚拟环境中,不然会报错。