地理数据分布的集中化与均衡度指数

本文介绍了洛伦兹曲线、基尼系数和锡尔系数在描述地理现象分布集中化程度和均衡度上的应用。洛伦兹曲线通过上凸程度体现集中化,集中化指数(如基尼系数和锡尔系数)用于量化这种分布的不平等程度,其中基尼系数和锡尔系数越大,表示分布越不均衡。这些指标在分析地理数据和经济收入分配时具有重要意义。
摘要由CSDN通过智能技术生成


地理现象的分布格局,常常用地理数据分布的集中化程度和均衡度来描述。为了揭示某种地理现象分布的基本格局,常常需要计算相关相关地理数据的集中化和均衡度指数。

一、洛伦兹曲线与集中化指数

1.洛伦兹曲线

​ 使用累计频率曲线研究工业化的集中程度。从曲线的上凸程度可以看出集中化的程度。

​ 对于一个特定的时期,如果按照空间(地区)构成,绘制出某要素数据分布的洛伦兹曲线,就可以描述该时期该要素在地域空间上分布的集中化程度。

2.集中化指数

​ 集中化程度,是描述地理数据分布的集中化程度的指数。

​ I=(A-R)/(M-R)

A——实际数据的累计百分比总和(洛伦兹曲线的积分)

R——均匀分布时的累计百分比总和(链接对角线的下三角)

M——集中分布时的累计百分比总和(方形面积)

二、基尼系数

​ 基尼系数,就是通过两组数据的对比分析,纵、横坐标均以累计百分比表示,从而作出洛伦兹曲线,然后再计算得出的集中化指数。基尼系数越大表示收入越悬殊。

三、锡尔系数

​ 除了基尼系数以外,也可以用锡尔(Theil)系数对于 经济发展、收入分配等均衡(不均衡)状况,进行定量化的描述。锡尔系数越大,就表示收入分配差距越大;反之,锡尔系数越小,就表示收入分配越均衡。

学习《计量地理学》(徐建华)笔记

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Q一件事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值