地理现象的分布格局,常常用地理数据分布的集中化程度和均衡度来描述。为了揭示某种地理现象分布的基本格局,常常需要计算相关相关地理数据的集中化和均衡度指数。
一、洛伦兹曲线与集中化指数
1.洛伦兹曲线
使用累计频率曲线研究工业化的集中程度。从曲线的上凸程度可以看出集中化的程度。
对于一个特定的时期,如果按照空间(地区)构成,绘制出某要素数据分布的洛伦兹曲线,就可以描述该时期该要素在地域空间上分布的集中化程度。
2.集中化指数
集中化程度,是描述地理数据分布的集中化程度的指数。
I=(A-R)/(M-R)
A——实际数据的累计百分比总和(洛伦兹曲线的积分)
R——均匀分布时的累计百分比总和(链接对角线的下三角)
M——集中分布时的累计百分比总和(方形面积)
二、基尼系数
基尼系数,就是通过两组数据的对比分析,纵、横坐标均以累计百分比表示,从而作出洛伦兹曲线,然后再计算得出的集中化指数。基尼系数越大表示收入越悬殊。
三、锡尔系数
除了基尼系数以外,也可以用锡尔(Theil)系数对于 经济发展、收入分配等均衡(不均衡)状况,进行定量化的描述。锡尔系数越大,就表示收入分配差距越大;反之,锡尔系数越小,就表示收入分配越均衡。
学习《计量地理学》(徐建华)笔记
本文介绍了洛伦兹曲线、基尼系数和锡尔系数在描述地理现象分布集中化程度和均衡度上的应用。洛伦兹曲线通过上凸程度体现集中化,集中化指数(如基尼系数和锡尔系数)用于量化这种分布的不平等程度,其中基尼系数和锡尔系数越大,表示分布越不均衡。这些指标在分析地理数据和经济收入分配时具有重要意义。
1085

被折叠的 条评论
为什么被折叠?



