读《今日简史》

   “假如有一天我们只能依据我们的浏览器来判断时候,那时候我们就不再是使用浏览器,而是成为浏览器的一部分。”知识输入的过程我们终将成为别人的奴隶,而知识输出的过程我们能看到更远的前景。
   关于伊斯兰文明:关于什么才是真正的伊斯兰文明,伊斯兰国家想要重新回到所谓的伊斯兰国,所谓正统什么才是正统呢?事实上,只要是穆斯林创造的都是伊斯兰文明,而所谓的正统只不过是目前想创造伊斯兰国的领导者,用自己的方式来创造一个他理想的伊斯兰国。
   关于思考:永远保持思考,永远保持质疑,这不是为了所谓的自由,而是为了看到更多的东西,有更大的探索。
   关于全球化与知识:我们所建立的国际秩序的确是件很了不起的事情。医学、数学、物理学实际上在一定意义上是统一的,我想这就是全球化。当我们把知识写在纸上,这是我们一个人的知识,当我们把知识通过论文(一定规则)发表出来,这是全社会的知识,显然后者更加容易发展,而且会更造福于人们。
   “身份认同是由冲突和困境来定义的,而不是由共同之处来定义的。”
    “如果只有1000个人,相信某个编造的故事,相信一个月,这就是假新闻。但如果是10亿人,相信某个编造的故事,相信1000年,这就成了宗教信仰,而且会警告所有其他人不准说这是“假新闻”,否则就会伤害信徒的感情。”
“关于对世界的认知:我们对于世界的认知是封装,而且我们习惯这样的封装,我们习惯就一个个封装,而不去思考,比如说:美元,本质上,这是一个无用的纸。”
    “对人类这个物种来说,喜欢权力过于真相。我们把比较多的时间和精力拿来努力控制世界,而非努力理解世界;而且就算我们努力理解世界,通常也是为了事后更容易地控制世界。所以,如果你理想中的社会是以真相至上,无视各种虚构的神话,智人社群大概只会让你大失去所望,还不如去黑猩猩社群碰碰运气。”
   “在所有虚构故事中,名列前茅的一个就是否认世界有多复杂,一切只以绝对的纯洁和极端的邪恶来思考。”
   “如果你想得到可靠的信息,必然要付出昂贵的代价。如果你总是免费得到信息,有可能你才是整个商业世界的产品。”所以对于我们现在面对的这个世界,我们需要清楚我们在做什么交易。
   “一切可能性指向未来很多机会消失,那么未来真正重要的是什么呢?我觉得可能只是人类本身罢了。”未来什么是重要的,我觉得很有可能是人类本身,但如何认识到这个本身呢?首先需要认识自己,而不是被算法所塑造。
   “15岁的时候人希望有很多的变化,但当50岁时,并没有准备好彻底自己的身份认同及深层架构。”
   “为自己的人生赋予意义,我并不不需要一个绝无盲点、毫无内部矛盾的完整故事,只要符合两个条件就行:第一,我在这个故事里至少要扮演某种角色;第二,一个好的故事所讨论的范畴不一定要无穷无尽,但至少要能够延申到超出我自己的视界。” “当我们做出牺牲时会感觉某个东西是真实存在的。比如说:一手车和二手车,这两者的差别就比较大。
   “人类将再也无法观察到真正的自己,而是由算法为人类决定我们是谁、该知道自己的哪些事。在未来几年或十几年内,我们还有选择。只要努力,我们还是能了解真正的自己是什么模样。但如果真要把握这个机会,最好从现在开始。”

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Q一件事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值