文献的阅读的习惯与方法

文献阅读是每个研究人员都要做的事情,然而虽然每个人都在阅读,但是每个人的阅读效率不一样,总结有效的方式是非常重要的。本笔记将梳理我在阅读文献中的方法和所在其中的关注点。

阅读文献有两种目的,第一种目的是日常阅读和学习第二种则是展示给老师和同组的同学看。

第一种方式的话于我而言很难真正看得进去,经常只能了解其皮毛,而不知其深意。因而一个日常看文献的框架是非常有必要的。之前搜索过一个框架,这个框架感觉用起来还是很不错的,推荐给大家。

一、文章的星级

二、文章的主要问题:在摘要里找

三、结论:在结论中找

四、思想脉络:理一理文章的大小标题

五、这篇文章主要的公式和方法

六、自己的思考

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-m4Z7jRHF-1676515029442)(F:\BaiduSyncdisk\typora\assets\image-20230216095050154.png)]

第二个就是日常的汇报文献了,日常的汇报文献与看文献不同,这个的要求更为严格。谁都不想体验被老师问到我问题却给不出答案的感觉吧。做为汇报,科学问题、作者的论证逻辑和结论都是比较重要的点。一般来说,我汇报的话主要分成一下几个章节来进行汇报。

1. 背景与科学问题(科学问题需要自己根据引言总结)
2. 研究框架与研究方法
3. 研究结果
4. 结论与讨论(这是文章的重点之一,另一个重点在引言部分)
5. 不足与缺陷

写在最后:看文献是服务于写文章,所以如果想对看文献有更深的了解的话,还是要写文章,在写文章中总结看文献要关注些什么。此外,评审别人的文章也更能让自己更了解什么是好文章,同时也能让自己在写文章中避免一些错误。此外,写成电子档版本的固然比较方便,但在实际上写下来的东西更让人记住。(或许过程越困难,越容易记住一些东西,罗夕夕博士曾经推荐用excel去记文献,在我这感觉笔写的更好记住。)

推荐书籍资料

书籍:《研究是一门艺术》

b站up:罗夕夕博士


文章内容代表本人经验,并不具有很强的科学性,谨慎参考。也欢迎大家就文中提到的问题发表自己理性的建议,以帮助作者和大家更好的提高文献阅读水平。

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Q一件事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值