什么是碳核查?

碳核查是针对碳排放单位提交的温室气体排放报告进行的独立验证过程,由第三方机构执行,以保证数据的真实性和完整性。这一过程涉及CO2和其他温室气体的量化,并在碳中和的背景下不断扩展。碳核查对于监管企业排放、实现国家碳减排目标具有重要意义,包括签订协议、文件评审和现场核查等多个步骤。
摘要由CSDN通过智能技术生成

1.碳核查的定义

    碳核查是指对参与碳排放权交易的碳排放管控单位提交的温室气体排放量化报告,其中的报告是由第三方服务机构编写,以确保碳排放单位提交的排放数据有效。碳核查的范围与时俱进,碳中和的范围是CO2及其它所有温室气体,目前的碳核查包括CO2和其他温室气体,随着碳中和内容的扩大碳核查的内容也将不断丰富[1-3]。

2.碳核查的内容

    碳核查是一种确保企业上报或披露的碳排放数据更真实、准确、完整的管理机制,只有引入第三方进行复核,才能充分避免偏见及利益冲突,让碳排放的数据核算报告更客观、专业和严谨,确保数据质量。碳核查的数据不仅是督导企业碳排放以及后续碳减排的关键依据,也是国家实现双碳目标所需的关键基础数据。
    核查机构应按照规定的程序进行核查,主要步骤包括签订协议、核查准备、文件评审、现场核查、核查报告编制、内部技术评审、核查报告交付及记录保存等 8 个步骤(见下图)。核查机构可以根据核查工作的实际情况对核查程序进行适当的调整,但调整的理由应在核查报告中予以详细说明[4]。
在这里插入图片描述
参考文献
[1] WANG J, JIN S, BAI W, et al. Comparative analysis of the international carbon verification policies and systems [J]. Natural Hazards, 2016, 84(1): 381-97.
[2] 鲁亚霜, 王颖, 张岳武. 国家温室气体排放统计核算报告体系现状研究 [J]. 环境影响评价, 2017, 39(02): 72-5.
[3] 白卫国, 王健夫, 姚芩, et al. 国际碳核查政策制度调查研究 [J]. 工程研究-跨学科视野中的工程, 2016, 8(03): 322-31.

[4]碳科普丨什么是碳核查?谁被核查?核查什么?

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Q一件事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值