什么是碳审计?

    碳审计全称为二氧化碳审计。如建筑物的使用者及管理人员,可以通过碳审计计算其建筑物的温室气体排放量,从而发掘改善空间,组织进一步的减排工作。碳审计指在定义的空间和时间边界内进行碳足迹计算的过程,它是审计机构接受政府授权或其他有关机构封托,依据国家政策、法律和有关规章、制度、标准,遵循审计准则,对被审计单位或部门的低碳生产经营、资源利用、财务信息、职贵履行等活动进行的特殊管理。碳审计立足于国家战路高度,其作用在于建立碳足迹作为衡量温室效应的一种工具,将审计融入经济社会发展,间接参与资源环境保护,是通过审计监督促进节约资源、保护环境政策目标落实的种重要手段。审计作为一项国家治理工具和监督机制,碳审计的开展是推动碳政策落实、规范碳信息核算与披露、提高碳管理水平和维护碳市场健康运行的必然举措[13-15]。

    碳审计对地球环境具有直接影响。一方面,碳审计能够通过自己特有的手段和方法,直接评价能源使用的投入产出关系,掲露能源利用的有效性以及对地球“体温"的影响等问题;另一方面,碳审计对能源使用标准的建立和使用情况、计量器具的选择节能技术研究等进行量化评价,从更加广泛的范围促使资源的科学利用,时加速产业结构合理升级,实现社会和谐发展。

参考文献
[13] 刘晓艳. “双碳”目标下碳审计的发展回顾及未来展望——基于中国知网(CNKI)数据的文献分析 [J]. 商业会计, 2022, No.742(22): 96-100.
[14] 周旭东, 郑石桥. 论碳审计需求 [J]. 财会月刊, 2022, No.921(05): 64-8.
[15] ZHANG Y, GU L, GUO X. Carbon audit evaluation system and its application in the iron and steel enterprises in China [J]. Journal of Cleaner Production, 2020, 248(119204.

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Q一件事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值