什么是碳披露

    碳披露,又称碳会计信息披露。通常指温室气体排放单位以定期报告和临时报告等形式,真实、全面、及时、充分地把碳排放相关的信息向投资者和社会公众公开披露的行为[20]。
    企业是市场交易的主体,是减排的主力军。在生产的各个环节、阶段、各种耗能设备管理等方面有可靠的、准确的数据,才能支持企业的管理、技术的改造和新技术的研发。数据的准确性和可靠性是企业制定绿色发展战略、提升能源效率的基础,及时准确地披露碳信息对企业至关重要。
    1992年《联合国气候变化公约》指出发达国家和发展中国家对碳减排应承担“共同但有区别”的责任,1997年《京都议定书》规定了温室气体排放权并建立了碳减排机制,2000年随着碳披露项目(简称CDP)的成立,企业碳信息披露进入了一个全新的发展阶段,全球各大企业逐步参与到CDP项目中来披露企业碳信息。2003年,英国政府最先在《能源白皮书》中提出低碳经济的概念,2009年哥本哈根气候峰会之后,低碳再次成为全球关注热点。2009年我国政府将低碳经济作为我国未来的战略发展方向,2010年7月国家发改委提出了低碳省区和低碳城市试点计划,2011年国家发改委正式批准北京市等7省市开展碳排放权交易试点,2013年,随着低碳试点方案逐渐获批,各低碳试点省市进入实操阶段。2021年11月26日,生态环境部2021年第四次部务会议审议通过《企业环境信息依法披露管理办法》。办法指出,企业是环境信息依法披露的责任主体,要求重点排污单位披露企业环境管理信息、污染物产生、治理与排放信息、碳排放信息等八类信息!为落实该办法,规范环境信息依法披露格式,2021年12月31日生态环境部制定了《企业环境信息依法披露格式准则》。准则指出,纳入碳排放权交易市场配额管理的温室气体重点排放单位应当披露碳排放相关信息:依据温室气体排放核算与报告标准或技术规范,披露排放设施、核算方法等信息。

参考文献
(2023). 分行业碳信息披露框架建议. 分行业碳信息披露框架建议, 美国环保协会.

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Q一件事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值