碳关税及相关概念

2023年5月16日,欧盟官方公报正式发布了碳边境调节机制(Carbon Border Adjustment Mechanism, CBAM)的最终法案文件 Regulation (EU) 2023/956,并于2023年5月17日正式生效。

官方链接: Carbon Border Adjustment Mechanism

主要内容

气候变化是一个全球性问题,需要全球性的解决方案。随着欧盟提高自己的气候雄心,只要许多非欧盟国家普遍采取不太严格的气候政策,就会存在所谓的“碳泄漏”风险。当欧盟公司将碳密集型生产转移到气候政策不如欧盟严格的国家,或者欧盟产品被碳密集型进口产品取代时,就会发生碳泄漏。

欧盟的碳边境调整机制(CBAM)是我们的标志性工具,旨在对进入欧盟的碳密集型产品生产过程中排放的碳进行公平定价,并鼓励非欧盟国家进行清洁工业生产。 CBAM 的逐步引入与欧盟排放交易体系 (ETS) 下免费配额分配的逐步取消相一致,以支持欧盟工业脱碳。

通过确认进口到欧盟的某些商品生产过程中产生的碳排放已经支付价格,CBAM将确保进口的碳价格等于国内生产的碳价格,并确保欧盟的气候目标没有受到破坏。 CBAM 的设计与 WTO 规则兼容。

最新的消息
最新动态 CBAM 法规于 2023 年 5 月 16 日在欧盟官方公报上发布后的第二天正式生效。CBAM 本身将于 2023 年 10 月 1 日进入过渡阶段,进口商的第一个报告期于 1 月 31 日结束2024 年。

欧盟委员会于 2023 年 8 月 17 日通过的实施条例进一步规定了向 CBAM 商品的欧盟进口商索取的报告义务和信息,以及计算 CBAM 商品生产过程中释放的内含排放量的临时方法。

我的理解:这里确实是一种防止碳泄露的方式。这个关税的提出使得哪些高排放的产品进入欧洲市场需要缴纳更多的税,从而可以促使全球的产品的关注“碳中和”。在最新发布的watch ultra 2中强调这个点,在未来小米、华为,不限于苹果产品都会进一步强调这个点。
在这里插入图片描述
企业如何应对

1.建立并完善企业碳管理相关体系与制度,计算相关排放量,开展节能降碳工作;

2.主动跟踪关注CBAM相关动态、国内及欧盟地区碳市场价格信息、国内CCER市场动态等。

参考文章
1.欧盟碳关税详解丨哪些产品已/或将被纳入CBAM管控?相关企业该如何应对?

下一步拟补充
国家层面上应该如何应对

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Q一件事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值