CCER相关

本文概述了CCER(中国核证减排量)的发展历程,从2012年至2017年的启动和交易,到2017年的暂停,再到2022年后的重启,以及其在双碳目标下的角色。重点介绍了交易规则和与碳排放配额交易的关系。
摘要由CSDN通过智能技术生成

相关定义[1]
CCER(Chinese Certified Emission Reduction)即核证自愿减排量,CCER交易与碳排放配额(Carbon Emissions Allowance,“CEA”)交易同为促进企业参与减排活动、推动“双碳”目标实现的重要手段。根据《温室气体自愿减排交易管理暂行办法》,参与自愿减排的减排量需经国家主管部门在国家自愿减排交易登记簿进行登记备案,经备案的减排量称为“中国核证减排量(CCER)”。自愿减排项目减排量经备案后,在经备案的交易机构内交易。

发展历史[2]

1. 2012年—2017年 建立制度、推动交易
2012年6月13日,国家发改委印发《温室气体自愿减排交易管理暂行办法》(以下简称“旧办法”),标志着我国CCER正式启动。随后于2012年10月,《温室气体自愿减排项目审定与核证指南》印发,为自愿减排项目的管理和交易提供了规范和依据。2014年,温室气体自愿减排项目备案审核工作开始,同年,首批CCER备案完成。次年,国家发改委上线自愿减排交易信息平台,CCER进入交易阶段,实现了在各试点区域的碳市场上进行交易。根据生态环境部下属机构国家气候战略中心的统计,在CCER开放审核的两年时间,总计有1315个CCER项目和7800万吨的CCER获得核准。
2. 2017年—2022年 暂停签发、存量交易
2017年3月14日,因“自愿减排交易量小、个别项目不规范”等原因,国家发改委发布2017年第2号公告,宣布暂缓受理温室气体自愿减排交易方法学、项目、减排量、审定与核证机构、交易机构备案申请。该公告同时称,本次暂缓受理不影响已备案的温室气体自愿减排项目和减排量在国家登记簿登记,也不影响已备案的CCER参与交易。此后,CCER交易进入存量阶段。
3. 2022年-至今 “双碳”目标、重启日程
碳交易是推动落实“双碳”目标所采取的重要手段与机制,CCER交易市场与碳排放配额交易市场互为补充,共同构成碳交易体系。自2020年9月22日我国提出“双碳”目标后,进一步推动了碳排放权交易制度的建立及完善,并于2021年2月起开始施行《碳排放权交易管理办法(试行)》及《碳排放权登记管理规则(试行)》《碳排放权交易管理规则(试行)》《碳排放权结算管理规则(试行)》等相关配套制度。其中,《碳排放权交易管理办法(试行)》第二十九条规定:“重点排放单位每年可以使用国家核证自愿减排量抵销碳排放配额的清缴,抵销比例不得超过应清缴碳排放配额的5%。”

我的理解:CCER其实是一种核证,如它的英文所言Chinese Certified Emission Reduction。只有核证了碳才能进行交易这个才是重点。

参考文献
[1]百度百科
[2]CCER重启倒计时:《温室气体自愿减排交易管理办法(试行)(征求意见稿)》解读
[3]定调!CCER年内重启!

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Q一件事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值