【0007day】总体标准差、样本标准差和无偏估计

总体标准差和样本标准差

一些表示上的差别。

总体标准差

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

样本标准差

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

两者的区别

在这里插入图片描述

样本方差为什么除以n-1?

这主要是由于样本的方差会低估总体的方差(抽样的过程中,按照概率来说,会多选中间的数值从而低估方差),为了使样本标准方差与总体标准方差相接近,这就需要乘以一个大于1的数。)至于为什么是n-1?这据说是又叫贝塞尔修正(这个人算了很多种情况,发现n-1的效果最好)。

参考资料

样本方差为什么除以n-1?

这里面说到了无偏估计。

无偏估计

可以用下面的来解释。
在这里插入图片描述

在基础统计文章中,但凡用到总体标准差的时候,都用样本标准差直接替代总体标准差,这是有误差的,只不过样本容量大时,这个误差可以忽略不计。下面的参考文献中讲到了不同的估算方法。

从上表可以得出以下结果:

  • 当样本容量n小时,各种方法的估计精度都不高,所以,要提高估计精度,样本容量应该足够大。
  • 四种方法估计精度由高到低顺序为:常用估计、无偏估计、平均误差估计、无偏极值估计。尽管无偏估计的相对标准差稍大于常用估计,但它还是优于常用估计,因为它不存在系统误差。
  • 当样本容量n小于10时,应用无偏估计,当n大于10时可采用常用估计,为计算简便且要求不高时可用无偏极差估计和平均误差估计。

虽然上面说了无偏估计,但是实际的无偏估计我依旧了解得不深。因而,我对相关概念进入深入探究。

无偏性与无偏估计量

在这里插入图片描述

笔者总结:看到这里,对于无偏估计我也大概了解了。

参考资料

如何理解和掌握总体标准差的估计方法及精度?

《概率论与数理统计》 浙大第四版

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Q一件事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值