CG的通关秘籍##
题意
思路
这个题一看就知道是要求公式的数学题,但是自己的数学水平很差,怎么想都想不出来,看了很多大佬的代码,但是他们都是直接推公式,把我都看蒙了,而我只能安心的打表找规律。
首先我们知道每一个点的贡献只与前一个点有关,而且每个点其实得到的总贡献都是一样的。
举一个例子n=3 m=4.
我们把所有的组合列出来。
第一个点没有贡献,所以我们不用管,我们只用观察第二个点的贡献,我们发现第二个点的贡献组合有
1 2
1 3
1 4
2 1
2 3
2 4
3 1
3 2
3 4
4 1
4 2
4 3
这样贡献的总和是S=(m*(m-1))/22+(m(m-1))/2。
也就是一共有**m*(m-1)*个组合,有一半的点是贡献为2,一半的贡献的值为1。
如果有n个点的话,每一个点的贡献都是这样的(第一个点没有贡献),所以所有点的贡献是 Ssum=S(n-1).
我们还发现,每一个组合并不是只出现一次。
每个组合出现的次数还和n和m有关,这个关系就是 pow(m,n-2),具体的也很好证明,大家可以自己试一下。
所有最终的答案就是 Ssum*pow(m,n-2).
代码
#include <bits/stdc++.h>
#define ll long long
#define fi first
#define se second
#define pb push_back
#define me memset
const int N = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
using namespace std;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL;
ll qmi(ll n,ll k)
{
ll res=1;
while(k)
{
if(k&1) res*=n;
res%=mod;
n*=n;
n%=mod;
k>>=1;
}
return res%mod;
}
ll f(ll n,ll m)
{
ll t=qmi(m,n-2)%mod;
// cout<<"t="<<t<<endl;
ll k=((m%mod)*(((m-1)%mod)%mod)/2)%mod;
// cout<<"k="<<k<<endl;
return ((k*2%mod+k)*(n-1)%mod*t%mod)%mod;
}
int main()
{
int t;
// cin>>t;
scanf("%d",&t);
while(t--)
{
int n,m;
scanf("%d%d",&n,&m);
printf("%lld\n",f(n,m)%mod);
}
return 0;
}
总结
这就是我想这个题的全过程,因为看别人的题解一直看不懂,感觉很难受,所以就想自己写一个题解,希望可以让大家都看懂。