
WWW 2024 |GraphPAR:赋予预训练图模型可证明的公平性
图神经网络(GNNs)在分析图结构数据方面取得了巨大的成功,例如社交网络和网页网络。最近,受预训练语言模型的启发,各种预训练图模型(PGMs)被提出。一般来说,PGMs 在预训练阶段通过无监督学习范式捕获可转移的固有图结构属性,然后通过微调来适应不同的下游任务。作为一种强大的学习范式,PGMs 在图机器学习领域受到了相当多的关注,并广泛应用于推荐系统和药物发现等各个领域。然而,最近的研究表明,预训练的语言模型往往会继承预训练语料库的偏见,这可能会针对性别、种族和宗教等敏感属性产生有偏见或不公平的预测。
























