【CCF-CSP】201412-4 最优灌溉 C++ Kruskal算法


一、题目

在这里插入图片描述

原题目链接

二、解题

1.Kruskal算法

Kruskal算法,用于求图的最小生成树。以下是该算法的详细思路:

  1. 初始化。将n个节点按顺序编号,初始化并查集。将最小生成树的权值初始化为0。

  2. 对边按权值从小到大排序。

  3. 对于每条边,判断它所连接的两个节点是否已经属于同一个联通分量(即它们是否在同一个集合中)。如果是,则该边会造成环路,不加入最小生成树;如果不是,则将该边加入最小生成树,并将这两个节点合并到同一个集合中。

  4. 重复以上步骤直到所有边都处理完毕。

  5. 返回最小生成树的总权值。

2.代码

dev c++ 5.11

#include<iostream>
#include<algorithm> 
#include<vector>
using namespace std;
struct node{
	int a;
	int b;
	int cost;
};
vector<node>p;
int n,m;
int sign[1005];
bool cmp(const node d,const node e){
	return d.cost < e.cost;
}
int Kruskal(){
	long long counts=0;
	for(int i=1;i<n;i++)
		sign[i]=i;
	for(int i=0;i<m;i++){
		int x=sign[p[i].a];
		int y=sign[p[i].b];
		if(x!=y){
			counts+=p[i].cost;
			for(int j=1;j<=n;j++)//!!!!!!!!!!!!!j不要打成i 
				if(sign[j]==y)
					sign[j]=x;
		}
	}
	return counts;
}
int main(){
	node temp;
	cin>>n>>m;
	for(int i=0;i<m;i++){
		cin>>temp.a>>temp.b>>temp.cost; 
		p.push_back(temp);
	}
	sort(p.begin(),p.end(),cmp);
	cout<<Kruskal()<<endl;
	return 0;
}



3.提交结果

结果

总结

1.一些解释

在Kruskal算法算法中,使用了一个并查集结构,主要用于实现第三步的联通性判断和合并操作。将一个节点所属的集合用一个代表元素表示,将每个集合用一个以代表元素为下标的数组来存储。在判断两个节点是否属于同一个集合时,只需要判断它们的代表元素是否相同即可。在将两个集合合并时,需要将一个集合的代表元素指向另一个集合的代表元素。这里采用了路径压缩和按秩合并的优化策略,可以减少并查集所需的时间复杂度。

该算法的时间复杂度为O(mlogn),其中m为边数,n为节点数。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值