数学分析 第三章 无穷、连续、收敛

本文探讨了无穷小的概念,包括无穷小阶的比较、等价无穷小的性质以及它们在函数分析中的应用。重点讲解了连续函数的定义、性质,如函数符号与极限的关系、间断点分类、初等函数的连续性和重要定理,如连续函数的最值定理和柯西收敛准则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无穷小

不能写成 原式=lim(x)*lim(sin(1/x))  因为lim(sin(1/x))没有极限

无穷小阶的比较

等价无穷小的性质

等价代换只能用于乘除,不能用于加减

无穷大及其性质与无穷小类似

连续函数  

对于连续函数,函数符号和极限符号可以交换位置,这对求连续复合函数的极限很有用

定义:

函数单侧连续

函数的间断点

间断点分类

初等函数的连续性

初等函数在它的定义区间内一定是连续的

连续函数有界定理

连续函数最值定理

闭区间  连续  两个条件缺一不可

零点存在定理

连续函数介值定理(零点存在定理的一般化)

函数一致连续的定义

子列收敛定理

确界存在定理:   上确界sup  下确界inf

      下确界同理

例题

  数集有界则必有确界

单调有界原理

柯西收敛准则:柯西收敛<-->数列有极限

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值