322. 零钱兑换

题目:

在这里插入图片描述

第一次思考:

  1. 想用递归分解子问题实现
  2. 不出意外的超时了

实现:

class Solution {
public:

    int amountCoin(vector<int>& coins, int amount)
    {
        if (amount<=0)  return 0;

        if (find(coins.begin(),coins.end(),amount)!=coins.end())
        {
            return 1;
        }
        int num=INT_MAX;

        for (auto c:coins)
        {
            if (amount-c<coins[0]) continue;
            num=min(amountCoin(coins,amount-c)+amountCoin(coins,c),num);
        }

        if (num==INT_MAX)  num=-1;

        return num;
    }

    int coinChange(vector<int>& coins, int amount) {
        int ref=amountCoin(coins,amount);
        return ref;
    }
};

第二次思考

  1. 既然分解了子问题,那就采用动态规划降低时空复杂度
  2. 使用自顶向下动态规划👇(相当于记忆搜索);
class Solution {
public :
    vector<int> dp;
public:
    int coinsNums(vector<int>& coins, int amount)
    {
        if (amount<0) return -1;
        if (amount==0)  return 0;
        if (dp[amount]!=0) return dp[amount];

        int temp=INT_MAX;
        for (auto c:coins)
        {
            int n=coinsNums(coins,amount-c);
            if (n>=0)
            {
                temp=min(temp,n+1);
            }
        }
        dp[amount]=temp==INT_MAX?-1:temp;
        return temp==INT_MAX?-1:temp;
    }
    int coinChange(vector<int>& coins, int amount) {
        dp.resize(amount+1,0);
        dp[0]=0;
        for (auto c:coins)
        {
            if (c<=amount)
            {
                dp[c]=1;
            }
        }
        int ref=coinsNums(coins,amount);
        return ref;
    }
};

第三次思考:

  1. 使用自底向上动态规划👇可以再省些和空间

实现:

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        int ref=0;

        if (amount==0)  return 0;

        vector<int> dp(amount+1,-1);

        for (auto c:coins)
        {
            if (c<=amount)
            dp[c]=1;
        }

        dp[0]=0;

        for (int i=0;i<=amount;i++)
        {
            int temp=INT_MAX;
            for (auto c:coins)
            {
                if (i-c<0) continue;

                if (dp[i-c]!=-1)
                    temp=min(dp[i-c]+dp[c],temp);
                    
            }
            if (temp!=INT_MAX)
            {
                dp[i]=temp;
            }
            
        }

        return dp[amount];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值