Centroid-Aware Feature Recalibration for Cancer Grading in Pathology Images论文速读

本文介绍了一种新的深度学习方法,通过质心感知特征重新校准网络(Centroid-AwareFeatureRecalibration,CaFe)改进癌症分级的准确性与稳健性。该模型利用注意力机制和质心更新机制优化病理图像的嵌入向量,以提高病理学图像分析的性能。
摘要由CSDN通过智能技术生成

Centroid-Aware Feature Recalibration for Cancer Grading in Pathology Images

摘要

癌症分级是病理学中的一项重要任务。人工神经网络在计算病理学领域的最新发展表明,这些方法在提高癌症诊断的准确性和质量方面具有巨大潜力。然而,这些方法的稳健性和可靠性问题尚未完全解决。

本文提出了一种质心感知特征重新校准网络,该网络可以以准确和稳健的方式进行癌症分级。该网络将输入病理图像映射到嵌入空间中,并通过注意力机制使用质心嵌入不同癌症等级的载体进行调整。该网络配备了重新校准的嵌入向量,将输入的病理图像分类为相关的类别标签,即癌症等级。

本文方法

在这里插入图片描述
设 {xi, yi}是一组病理图像和标签对,深度神经网络 f 学习映射到嵌入空间中,从而产生嵌入向量 ei 。嵌入向量 ei 被输入到
1) 质心更新 (Cup) 模块
2) 质心感知特征重新校准 (CaFe) 模块中。Cup 模块获取并更新嵌入空间 中类标签的质心。 CaFe 模块根据类质心的嵌入向量调整嵌入向量,并生成重新校准的嵌入向量 ER

Cup模块将不同类标签的嵌入向量相加,计算平均嵌入向量,并更新质心嵌入向量

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值