互联网大厂Java面试实录:谢飞机的“惊险”三轮面试
第一轮:基础与框架
面试官:谢飞机,你好!我们先来聊聊一些基础的问题。
- Q1: 你使用过Spring Boot吗?它和传统的Spring MVC有什么区别?
- Q2: 在构建项目时,你更倾向于使用Maven还是Gradle?为什么?
- Q3: 如果让你选择一个Web框架用于微服务开发,你会选Spring Boot还是Micronaut?为什么?
- Q4: 你对Jakarta EE了解多少?
- Q5: Spring Boot如何实现自动配置?
谢飞机:(自信满满)Spring Boot最大的优势是简化了Spring应用的初始搭建和开发,内置Tomcat,开箱即用,而Spring MVC需要手动配置很多东西。我更喜欢用Gradle,因为它基于Groovy语法,可读性更好,而且依赖管理也方便。对于微服务,我会选Spring Boot,因为生态成熟,社区强大。至于Jakarta EE,它是Java企业版的标准,提供了一些高级功能,比如EJB、JMS等,但现在更多人用Spring生态。自动配置嘛,应该是通过条件注解@ConditionalOnClass之类的来判断类路径是否存在某些类,从而决定是否加载特定的Bean。
面试官:不错,看来你对Spring Boot有一定的理解。那我们继续。
第二轮:数据库与缓存
Q6: Hibernate和MyBatis的区别是什么?你在什么场景下会选择其中一个? Q7: 你知道HikariCP和C3P0之间的差异吗? Q8: Redis作为缓存,在高并发场景下如何保证数据一致性? Q9: Flyway和Liquibase哪个更适合做数据库迁移? Q10: JPA和Hibernate之间有什么联系?
谢飞机:(稍显犹豫)Hibernate封装了很多底层细节,适合快速开发;而MyBatis则更灵活,适合需要精细化控制SQL的场景。HikariCP性能更好,配置简单,现在基本都用它。Redis的话,可以通过设置TTL或者结合本地缓存来做一致性。Flyway可能更适合简单的版本控制,Liquibase支持XML/JSON/YAML格式,更复杂一点。JPA是一个规范,Hibernate是它的实现。
面试官:嗯,回答得还算准确。接下来我们进入第三轮。
第三轮:分布式与AI集成
Q11: Spring Cloud和Dubbo有什么区别?你更推荐哪一个? Q12: Kafka和RabbitMQ在消息可靠性方面有什么不同? Q13: 如何利用Spring AI或RAG构建一个智能客服系统? Q14: Prometheus和ELK Stack分别适用于哪些监控场景? Q15: 微服务架构中,如何处理服务注册与发现?
谢飞机:(开始紧张)Spring Cloud是一整套微服务解决方案,包括服务注册、配置中心、网关等,而Dubbo更专注于RPC通信。Kafka吞吐量高,适合大数据场景;RabbitMQ延迟低,适合实时性要求高的业务。至于Spring AI,可以整合OpenAI的Embedding模型,然后用向量数据库做语义检索。Prometheus适合监控指标,ELK适合日志分析。服务注册一般用Eureka或者Consul吧。
面试官:好的,今天的面试就到这里。你可以回家等通知了。
答案详解
Q1: Spring Boot vs Spring MVC
- Spring Boot:内置Tomcat、自动配置、起步依赖,适合快速开发。
- Spring MVC:传统MVC框架,需要手动配置DispatcherServlet、ViewResolver等。
- 业务场景:电商后台管理系统适合Spring Boot,传统银行系统可能用Spring MVC。
Q2: Maven vs Gradle
- Maven:XML配置,依赖传递机制清晰,插件丰富。
- Gradle:Groovy DSL,DSL更简洁,构建速度快。
- 业务场景:大型项目推荐Gradle,中小型项目可用Maven。
Q3: Spring Boot vs Micronaut
- Spring Boot:生态完善,社区活跃,但启动慢、内存占用高。
- Micronaut:轻量级,冷启动快,适合Serverless架构。
- 业务场景:云原生服务推荐Micronaut,常规微服务推荐Spring Boot。
Q4: Jakarta EE简介
- 是Java EE的继任者,由Eclipse基金会维护。
- 包括CDI、JAX-RS、JPA、EJB、JMS等标准。
- 业务场景:金融核心系统可能会采用Jakarta EE以确保标准化。
Q5: Spring Boot自动配置原理
- 基于
@EnableAutoConfiguration注解,扫描spring-boot-autoconfigure中的META-INF/spring.factories。 - 利用
@ConditionalOnClass、@ConditionalOnMissingBean等条件注解动态加载Bean。 - 业务场景:简化电商系统的支付模块配置。
Q6: Hibernate vs MyBatis
- Hibernate:ORM框架,自动映射POJO到数据库表,适合CRUD密集型。
- MyBatis:半自动化ORM,需手动编写SQL,适合报表、复杂查询。
- 业务场景:电商平台订单管理适合Hibernate,数据分析适合MyBatis。
Q7: HikariCP vs C3P0
- HikariCP:高性能连接池,配置简单,默认最大连接数10。
- C3P0:老牌连接池,功能多但配置复杂。
- 业务场景:电商秒杀系统推荐HikariCP。
Q8: Redis缓存一致性
- 可采用双删策略(删除缓存 -> 更新DB -> 再次删除缓存)。
- 或使用Canal监听MySQL Binlog异步更新缓存。
- 业务场景:社交平台用户信息缓存。
Q9: Flyway vs Liquibase
- Flyway:SQL优先,适合已有DB结构。
- Liquibase:支持XML/JSON/YAML,适合跨数据库迁移。
- 业务场景:医疗供应链系统推荐Flyway。
Q10: JPA vs Hibernate
- JPA:Java持久化规范,定义接口。
- Hibernate:JPA的一个实现,提供具体功能如二级缓存、懒加载。
- 业务场景:企业OA系统常用JPA+Hibernate组合。
Q11: Spring Cloud vs Dubbo
- Spring Cloud:完整的微服务生态,包括Config、Gateway、Feign、Sleuth等。
- Dubbo:专注RPC通信,配合Zookeeper做服务注册。
- 业务场景:金融风控系统推荐Spring Cloud,物联网设备通信推荐Dubbo。
Q12: Kafka vs RabbitMQ
- Kafka:高吞吐,适合日志收集、事件溯源。
- RabbitMQ:低延迟,适合订单支付确认、短信发送。
- 业务场景:直播弹幕系统适合Kafka。
Q13: 智能客服系统设计
- 使用Spring AI整合OpenAI Embedding模型生成语义向量。
- 存入Milvus或Chroma向量数据库。
- 用户输入后,进行向量相似度匹配,返回最接近的知识库内容。
- 业务场景:电商客服机器人、银行智能问答。
Q14: Prometheus vs ELK Stack
- Prometheus:拉取式监控,适合容器、微服务健康检查。
- ELK Stack:集中式日志分析,适合搜索日志、异常检测。
- 业务场景:云原生平台用Prometheus,运营日志用ELK。
Q15: 服务注册与发现
- Spring Cloud:Eureka、Consul、Zookeeper。
- Dubbo:Zookeeper、Nacos。
- 业务场景:微服务注册推荐Eureka或Consul。
📌 总结:谢飞机虽然在前两轮表现尚可,但在AI、分布式等进阶领域还存在明显短板。建议加强实战经验,尤其是Spring AI、RAG、向量数据库等内容的学习。

被折叠的 条评论
为什么被折叠?



