最优传输学习及问题总结

欢迎关注我们组的微信公众号,更多好文章在等你呦!
微信公众号名:碳硅数据
公众号二维码:
在这里插入图片描述

参考内容

https://blog.csdn.net/qq_41129489/article/details/128830589
https://zhuanlan.zhihu.com/p/542379144

我主要想强调的是这个例子的解法存在的一些细节问题

lam=0.1

lam = 0.1

P, d = compute_optimal_transport(M,
        r,
        c, lam=lam)

partition = pd.DataFrame(P, index=np.arange(1, 9), columns=np.arange(1, 6))
ax = partition.plot(kind='bar', stacked=True)
print('Sinkhorn distance: {}'.format(d))
ax.set_ylabel('portions')
ax.set_title('Optimal distribution ($\lambda={}$)'.format(lam))

print(d)

PP = np.around(P,3) 
print(PP)

print("*"*100)
print(np.sum(PP,axis=0))
print(np.sum(PP,axis=1))
print("*"*100)
## 这个很接近了

结果如下
在这里插入图片描述

lam=3

lam = 3

P, d = compute_optimal_transport(M,
        r,
        c, lam=lam)

partition = pd.DataFrame(P, index=np.arange(1, 9), columns=np.arange(1, 6))
ax = partition.plot(kind='bar', stacked=True)
print('Sinkhorn distance: {}'.format(d))
ax.set_ylabel('portions')
ax.set_title('Optimal distribution ($\lambda={}$)'.format(lam))
print(d)

PP = np.around(P,3) 
print(PP)

print("*"*100)
print(np.sum(PP,axis=0))
print(np.sum(PP,axis=1))
print("*"*100)
## 这个很接近了

在这里插入图片描述

lam=10

lam = 10

P, d = compute_optimal_transport(M,
        r,
        c, lam=lam)

partition = pd.DataFrame(P, index=np.arange(1, 9), columns=np.arange(1, 6))
ax = partition.plot(kind='bar', stacked=True)
print('Sinkhorn distance: {}'.format(d))
ax.set_ylabel('portions')
ax.set_title('Optimal distribution ($\lambda={}$)'.format(lam))

print(d)

PP = np.around(P,3) 
print(PP)

print("*"*100)
print(np.sum(PP,axis=0))
print(np.sum(PP,axis=1))
print("*"*100)
## 这个很接近了

在这里插入图片描述

lam=50

lam = 50

P, d = compute_optimal_transport(M,
        r,
        c, lam=lam)

partition = pd.DataFrame(P, index=np.arange(1, 9), columns=np.arange(1, 6))
ax = partition.plot(kind='bar', stacked=True)
print('Sinkhorn distance: {}'.format(d))
ax.set_ylabel('portions')
ax.set_title('Optimal distribution ($\lambda={}$)'.format(lam))

PP = np.around(P,3) 
print(PP)

print("*"*100)
print(np.sum(PP,axis=0))
print(np.sum(PP,axis=1))
print("*"*100)
## 这个很接近了

在这里插入图片描述

lam=100

lam = 100

P, d = compute_optimal_transport(M,
        r,
        c, lam=lam)

partition = pd.DataFrame(P, index=np.arange(1, 9), columns=np.arange(1, 6))
ax = partition.plot(kind='bar', stacked=True)
print('Sinkhorn distance: {}'.format(d))
ax.set_ylabel('portions')
ax.set_title('Optimal distribution ($\lambda={}$)'.format(lam))

print(d)
PP = np.around(P,3) 
print(PP)

print("*"*100)
print(np.sum(PP,axis=0))
print(np.sum(PP,axis=1))
print("*"*100)
## 这个很接近了

在这里插入图片描述

lam=300

lam = 300

P, d = compute_optimal_transport(M,
        r,
        c, lam=lam)

partition = pd.DataFrame(P, index=np.arange(1, 9), columns=np.arange(1, 6))
ax = partition.plot(kind='bar', stacked=True)
print('Sinkhorn distance: {}'.format(d))
ax.set_ylabel('portions')
ax.set_title('Optimal distribution ($\lambda={}$)'.format(lam))

print(d)
PP = np.around(P,3) 
print(PP)

print("*"*100)
print(np.sum(PP,axis=0))
print(np.sum(PP,axis=1))
print("*"*100)
## 这个就不接近了,之前的求和都是相差在0.001左右,可以近似看作相等
## 但是这个行和是 [2.    1.714 3.75  2.286 2.5   2.5   4.    1.25 ]
## 很明显是 [3. 3. 3. 4. 2. 2. 2. 1.]这个是不对的,所以lam=300时这个值已经发散了,
## 虽然此时的Sinkhorn distance是小于24的,但也不起作用

在这里插入图片描述

画图

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

def compute_optimal_transport(M=None, r=None, c=None, lam=None, eplison=1e-8):
    """
    Computes the optimal transport matrix and Slinkhorn distance using the
    Sinkhorn-Knopp algorithm

    Inputs:
        - M : cost matrix (n x m)
        - r : vector of marginals (n, )
        - c : vector of marginals (m, )
        - lam : strength of the entropic regularization
        - epsilon : convergence parameter

    Outputs:
        - P : optimal transport matrix (n x m)
        - dist : Sinkhorn distance
    """
    r = np.array([3, 3, 3, 4, 2, 2, 2, 1])
    c = np.array([4, 2, 6, 4, 4])
    M = np.array(
        [[2, 2, 1, 0, 0], 
        [0, -2, -2, -2, -2], 
        [1, 2, 2, 2, -1], 
        [2, 1, 0, 1, -1],
        [0.5, 2, 2, 1, 0], 
        [0, 1, 1, 1, -1], 
        [-2, 2, 2, 1, 1], 
        [2, 1, 2, 1, -1]],
        dtype=float) 
    M = -M # 将M变号,从偏好转为代价
    
    
    n, m = M.shape  # 8, 5
    P = np.exp(-lam * M) # (8, 5)
    P /= P.sum()  # 归一化
    u = np.zeros(n) # (8, )
    # normalize this matrix
    while np.max(np.abs(u - P.sum(1))) > eplison: # 这里是用行和判断收敛
        # 对行和列进行缩放,使用到了numpy的广播机制,不了解广播机制的同学可以去百度一下
        u = P.sum(1) # 行和 (8, )
        P *= (r / u).reshape((-1, 1)) # 缩放行元素,使行和逼近r
        v = P.sum(0) # 列和 (5, )
        P *= (c / v).reshape((1, -1)) # 缩放列元素,使列和逼近c
    return P, np.sum(P * M) # 返回分配矩阵和Sinkhorn距离

lam_list=[1,5,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150]

cost_list=[]
for lam in lam_list:
    P, d = compute_optimal_transport(lam=lam)
    cost_list.append(d)
print(cost_list)
plt.plot(np.array(lam_list),np.array(cost_list),c="g")
plt.show()

## 现在这个地方也有的

在这里插入图片描述
这个地方其实有一个画图的小问题,我待会要再写一下

可以看到大概是在lam =150的时候,就已经不稳定了,所以这个例子的问题的解的最小花费约等于24,但是我发现一个更有意思的问题,就是这个分配矩阵是唯一的吗,很显然不是的, 利用我上篇文章学到的线性规划,我发现matlab和python找到的是两个不同的解,

线性规划

matlab

clc;
clear;

r = [3, 3, 3, 4, 2, 2, 2, 1];
c = [4, 2, 6, 4, 4];
cost_matrix =  [2, 2, 1, 0, 0;
             0, -2, -2, -2, -2; 
               1, 2, 2, 2, -1;
               2, 1, 0, 1, -1;
              0.5, 2, 2, 1, 0;
               0, 1, 1, 1, -1;
               -2, 2, 2, 1, 1;
              2, 1, 2, 1, -1];

cost_matrix_t = (-1)*transpose(cost_matrix);% 需要有符号
cost_vec = cost_matrix_t(:);

raw_equ = zeros(8,40);
for i =1:8
    raw_equ(i,((i-1)*5+1):((i-1)*5+5))=1;
end

col_equ = zeros(5,40);
for i =1:5
    for j =1:8
        col_equ(i,i+(j-1)*5)=1;
    end
end

equ = [raw_equ;col_equ];
equ_value = horzcat(r, c);
% x1,x2,x3,x4,x5
% x6,x7,x8,x9,x10
% x11,x12,x13,x14,x15
% x16,x17,x18,x19,x20
% x21,x22,x23,x24,x25
% x26,x27,x28,x29,x30
% x31,x32,x33,x34,x35
% x36,x37,x38,x39,x40

% 现在我要求的变量是这样的,
f=cost_vec;			% 价值向量
a=[];	% a、b对应不等式的左边和右边
b=[];
aeq=equ;	% aeq和beq对应等式的左边和右边
beq=equ_value;
[x,y]=linprog(f,a,b,aeq,beq,zeros(40,1));

arr_mat = transpose(reshape(x',5,8));

结果如下
在这里插入图片描述
分配矩阵如下在这里插入图片描述

python代码

# Define parameters
m = 8
n = 5

p = np.array([3, 3, 3, 4, 2, 2, 2, 1])
q = np.array([4, 2, 6, 4, 4])

C = -1*np.array(
    [[2, 2, 1, 0, 0], 
    [0, -2, -2, -2, -2], 
    [1, 2, 2, 2, -1], 
    [2, 1, 0, 1, -1],
    [0.5, 2, 2, 1, 0], 
    [0, 1, 1, 1, -1], 
    [-2, 2, 2, 1, 1], 
    [2, 1, 2, 1, -1]],
    dtype=float)

# Vectorize matrix C
C_vec = C.reshape((m*n, 1), order='F')

# Construct matrix A by Kronecker product
A1 = np.kron(np.ones((1, n)), np.identity(m))
A2 = np.kron(np.identity(n), np.ones((1, m)))
A = np.vstack([A1, A2])

# Construct vector b
b = np.hstack([p, q])

# Solve the primal problem
res = linprog(C_vec, A_eq=A, b_eq=b)

# Print results
print("message:", res.message)
print("nit:", res.nit)
print("fun:", res.fun)
print("z:", res.x)
print("X:", res.x.reshape((m,n), order='F'))

结果如下
在这里插入图片描述
可以看到花费都是24,但是两者的分配矩阵并不一样哈

  • 7
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值