基于paddle的数据可视化以及paddlepaddle安装 百度深度学习7日—Day01

百度深度学习7日—Day01数据可视化以及框架安装

- 快速安装paddlepaddle
1.环境准备
2.安装步骤
3.验证安装

- 疫情数据可视化
1.爬取丁香园公开数据
2.安装第三方库pyecharts
3.数据可视化

快速安装paddlepaddle

参考飞桨官方网站的安装说明(https://www.paddlepaddle.org.cn/documentation/docs/zh/install/index_cn.html)进行快速安装。
安装说明这里将选择windows下安装:

环境准备:

基本软硬件要求:
Windows 7/8/10 专业版/企业版 (64bit)
GPU版本支持CUDA 9.0/9.1/9.2/10.0/10.1,且仅支持单卡
Python 版本 2.7.15+/3.5.1+/3.6/3.7 (64 bit)
pip 版本 9.0.1+ (64 bit)

确定计算机python版本

python --version

确定python路径是否符合预期

where python

确定pip版本是否满足要求,要求pip版本为9.0.1+

python -m ensurepip
python -m pip --version

如果使用pip出现下载速度过慢的情况,可以选择为pip更换国内源,参考文章:

Windows下更换pip源为清华源(https://blog.csdn.net/Artprog/article/details/75632723)

在这里插入图片描述

安装步骤:

安装方式有3种,这里选择pip安装:
读者可以根据自己的设备选择合适的版本安装,如果读者是新手,推荐安装CPU版本。
CPU版PaddlePaddle:
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple(推荐使用百度源) 或 python -m pip install paddlepaddle -i https://pypi.tuna.tsinghua.edu.cn/simple
GPU版PaddlePaddle:
python -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simplepython -m pip install paddlepaddle-gpu -i https://pypi.tuna.tsinghua.edu.cn/simple

验证安装:

安装完成后,打开cmd,使用 python 进入python解释器

python

输入

import paddle.fluid as fluid
fluid.install_check.run_check()

如果出现Your Paddle Fluid is installed succesfully!,说明您已成功安装。

疫情数据可视化

本项目是通过爬虫爬取数据,并利用pyecharts进行数据可视化操作。

可视化,是一种利用计算机图形学和图像处理技术,将数据转换成图像在屏幕上显示出来,再进行交互处理的理论、方法和技术。

爬取丁香园公的开统计数据

上网的全过程:

  • 普通用户

打开浏览器 --> 往目标站点发送请求 --> 接收响应数据 --> 渲染到页面上。

  • 爬虫程序

模拟浏览器 --> 往目标站点发送请求 --> 接收响应数据 --> 提取有用的数据 --> 保存到本地/数据库。

爬虫的过程:
1.发送请求(requests模块)
2.获取响应数据(服务器返回)
3.解析并提取数据(re正则)
4.保存数据

request模块:
requests是python实现的简单易用的HTTP库,官网地址:http://cn.python-requests.org/zh_CN/latest/
re模块: re模块是python用于匹配字符串的模块,该模块中提供的很多功能是基于正则表达式实现的。

import json
import re
import requests
import datetime

today = datetime.date.today().strftime('%Y%m%d')   #20200315

def crawl_dxy_data():
    """
    爬取丁香园实时统计数据,保存到f://data/目录下,以当前日期作为文件名,存JSON文件
    """
    response = requests.get('https://ncov.dxy.cn/ncovh5/view/pneumonia') #request.get()用于请求目标网站
    print(response.status_code)                                          # 打印状态码


    try:
        url_text = response.content.decode()                             #更推荐使用response.content.deocde()的方式获取响应的html页面
        #print(url_text)
        url_content = re.search(r'window.getAreaStat = (.*?)}]}catch',   #re.search():扫描字符串以查找正则表达式模式产生匹配项的第一个位置 ,然后返回相应的match对象。
                                url_text, re.S)                          #在字符串a中,包含换行符\n,在这种情况下:如果不使用re.S参数,则只在每一行内进行匹配,如果一行没有,就换下一行重新开始;
                                                                         #而使用re.S参数以后,正则表达式会将这个字符串作为一个整体,在整体中进行匹配。
        texts = url_content.group()                                      #获取匹配正则表达式的整体结果
        content = texts.replace('window.getAreaStat = ', '').replace('}catch', '') #去除多余的字符
        json_data = json.loads(content)                                         
        with open('f://data/' + today + '.json', 'w', encoding='UTF-8') as f:
            json.dump(json_data, f, ensure_ascii=False)
    except:
        print('<Response [%s]>' % response.status_code)


def crawl_statistics_data():
    """
    获取各个省份历史统计数据,保存到f://data/目录下,存JSON文件
    """
    with open('f://data/'+ today + '.json', 'r', encoding='UTF-8') as file:
        json_array = json.loads(file.read())

    statistics_data = {}
    for province in json_array:
        response = requests.get(province['statisticsData'])
        try:
            statistics_data[province['provinceShortName']] = json.loads(response.content.decode())['data']
        except:
            print('<Response [%s]> for url: [%s]' % (response.status_code, province['statisticsData']))

    with open("f://data/statistics_data.json", "w", encoding='UTF-8') as f:
        json.dump(statistics_data, f, ensure_ascii=False)


if __name__ == '__main__':
    crawl_dxy_data()
    crawl_statistics_data()

运行成功后,在f://data/目录下,可以得到两个文件
在这里插入图片描述

安装第三方库pyecharts

Echarts 是一个由百度开源的数据可视化工具,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。pyecharts api可以参考:https://pyecharts.org/#/zh-cn/chart_api
使用 options 配置项,在 pyecharts 中,一切皆 Options。
主要分为全局配置组件和系列配置组件。
(1)系列配置项 set_series_opts(),可配置图元样式、文字样式、标签样式、点线样式等;
(2)全局配置项 set_global_opts(),可配置标题、动画、坐标轴、图例等;
先来认识下全局配置组件吧!
在这里插入图片描述这里将通过pip安装pyechart库:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts
数据可视化
全国地图
import json
import datetime
from pyecharts.charts import Map
from pyecharts import options as opts

# 读原始数据文件
today = datetime.date.today().strftime('%Y%m%d')   #20200315
datafile = 'f://data/'+ today + '.json'
with open(datafile, 'r', encoding='UTF-8') as file:
    json_array = json.loads(file.read())

# 分析全国实时确诊数据:'confirmedCount'字段
china_data = []
for province in json_array:
    china_data.append((province['provinceShortName'], province['confirmedCount']))
china_data = sorted(china_data, key=lambda x: x[1], reverse=True)                 #reverse=True,表示降序,反之升序

print(china_data)
# 全国疫情地图
# 自定义的每一段的范围,以及每一段的特别的样式。
pieces = [
    {'min': 10000, 'color': '#540d0d'},
    {'max': 9999, 'min': 1000, 'color': '#9c1414'},
    {'max': 999, 'min': 500, 'color': '#d92727'},
    {'max': 499, 'min': 100, 'color': '#ed3232'},
    {'max': 99, 'min': 10, 'color': '#f27777'},
    {'max': 9, 'min': 1, 'color': '#f7adad'},
    {'max': 0, 'color': '#f7e4e4'},
]
labels = [data[0] for data in china_data]
counts = [data[1] for data in china_data]

m = Map()
m.add("累计确诊", [list(z) for z in zip(labels, counts)], 'china')

#系列配置项,可配置图元样式、文字样式、标签样式、点线样式等
m.set_series_opts(label_opts=opts.LabelOpts(font_size=12),
                  is_show=False)
#全局配置项,可配置标题、动画、坐标轴、图例等
m.set_global_opts(title_opts=opts.TitleOpts(title='全国实时确诊数据',
                                            subtitle='数据来源:丁香园'),
                  legend_opts=opts.LegendOpts(is_show=False),
                  visualmap_opts=opts.VisualMapOpts(pieces=pieces,
                                                    is_piecewise=True,   #是否为分段型
                                                    is_show=True))       #是否显示视觉映射配置
#render()会生成本地 HTML 文件,默认会在当前目录生成 render.html 文件,也可以传入路径参数,如 m.render("mycharts.html")
m.render(path='f://data/全国实时确诊数据.html')

成功运行后,就可以在f://data目录下找到“全国实时确诊数据.html”文件:
在这里插入图片描述

增长趋势图
import numpy as np
import json
from pyecharts.charts import Line
from pyecharts import options as opts

# 读原始数据文件
datafile = 'f://data/statistics_data.json'
with open(datafile, 'r', encoding='UTF-8') as file:
    json_dict = json.loads(file.read())

# 分析各省份2月1日至今的新增确诊数据:'confirmedIncr'
statistics__data = {}
for province in json_dict:
    statistics__data[province] = []
    for da in json_dict[province]:
        if da['dateId'] >= 20200201:
            statistics__data[province].append(da['confirmedIncr'])

# 获取日期列表
dateId = [str(da['dateId'])[4:6] + '-' + str(da['dateId'])[6:8] for da in json_dict['湖北'] if
          da['dateId'] >= 20200201]

# 全国新增趋势
all_statis = np.array([0] * len(dateId))
for province in statistics__data:
    all_statis = all_statis + np.array(statistics__data[province])

all_statis = all_statis.tolist()
# 湖北新增趋势
hubei_statis = statistics__data['湖北']
# 湖北以外的新增趋势
other_statis = [all_statis[i] - hubei_statis[i] for i in range(len(dateId))]

line = Line()
line.add_xaxis(dateId)
line.add_yaxis("全国新增确诊病例",   #图例
                all_statis,       #数据
                is_smooth=True,   #是否平滑曲线
               linestyle_opts=opts.LineStyleOpts(width=4, color='#B44038'),#线样式配置项
               itemstyle_opts=opts.ItemStyleOpts(color='#B44038',          #图元样式配置项
                                                 border_color="#B44038",   #颜色
                                                 border_width=10))         #图元的大小
line.add_yaxis("湖北新增确诊病例", hubei_statis, is_smooth=True,
               linestyle_opts=opts.LineStyleOpts(width=2, color='#4E87ED'),
               label_opts=opts.LabelOpts(position='bottom'),              #标签在折线的底部
               itemstyle_opts=opts.ItemStyleOpts(color='#4E87ED',
                                                 border_color="#4E87ED",
                                                 border_width=3))
line.add_yaxis("其他省份新增病例", other_statis, is_smooth=True,
               linestyle_opts=opts.LineStyleOpts(width=2, color='#F1A846'),
               label_opts=opts.LabelOpts(position='bottom'),              #标签在折线的底部
               itemstyle_opts=opts.ItemStyleOpts(color='#F1A846',
                                                 border_color="#F1A846",
                                                 border_width=3))
line.set_global_opts(title_opts=opts.TitleOpts(title="新增确诊病例", subtitle='数据来源:丁香园'),
                     yaxis_opts=opts.AxisOpts(max_=16000, min_=1, type_="log",    #坐标轴配置项
                                              splitline_opts=opts.SplitLineOpts(is_show=True),#分割线配置项
                                              axisline_opts=opts.AxisLineOpts(is_show=True)))#坐标轴刻度线配置项
line.render(path='f://data/趋势图.html')

成功运行后,就可以在f://data目录下找到“趋势图.html”文件:
在这里插入图片描述

全国实时确诊数据饼状图
import json
import datetime
from pyecharts.charts import Pie
from pyecharts import options as opts

# 读原始数据文件
today = datetime.date.today().strftime('%Y%m%d')   #20200315
datafile = 'f://data/'+ today + '.json'
with open(datafile, 'r', encoding='UTF-8') as file:
    json_array = json.loads(file.read())

# 分析全国实时确诊数据:'confirmedCount'字段
china_data = []
for province in json_array:
    china_data.append((province['provinceShortName'], province['confirmedCount']))
china_data = sorted(china_data, key=lambda x: x[1], reverse=True)                 #reverse=True,表示降序,反之升序

print(china_data)
# 全国疫情地图

labels = [data[0] for data in china_data]
counts = [data[1] for data in china_data]

m = Pie(init_opts=opts.InitOpts(height='900px'))
m.add("累计确诊", [list(z) for z in zip(labels, counts)], center=["50%", "60%"], radius=['0%', '40%'])

#系列配置项,可配置图元样式、文字样式、标签样式、点线样式等
m.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}", font_size=12),
                  is_show=False)

#全局配置项,可配置标题、动画、坐标轴、图例等
m.set_global_opts(title_opts=opts.TitleOpts(title='全国实时确诊数据',
                                            subtitle='数据来源:丁香园|Power By Irving.Gao'),
                  legend_opts=opts.LegendOpts(is_show=False, type_="scroll", pos_left="80%", orient="vertical"),
                  )

#render()会生成本地 HTML 文件,默认会在当前目录生成 render.html 文件,也可以传入路径参数,如 m.render("mycharts.html")
m.render(path='f://data/全国实时确诊数据饼图.html')

成功运行后,就可以在f://data目录下找到“全国实时确诊数据饼图.html”文件:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值