CCF CSP201312-4有趣的数
题目描述
问题描述
我们把一个数称为有趣的,当且仅当:
1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次。
2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前。
3. 最高位数字不为0。
因此,符合我们定义的最小的有趣的数是2013。除此以外,4位的有趣的数还有两个:2031和2301。
请计算恰好有n位的有趣的数的个数。由于答案可能非常大,只需要输出答案除以1000000007的余数。
输入格式
输入只有一行,包括恰好一个正整数n (4 ≤ n ≤ 1000)。
输出格式
输出只有一行,包括恰好n 位的整数中有趣的数的个数除以1000000007的余数。
样例输入
4
样例输出
3
要点分析
此题是一道典型的数位DP类的题目,需要对末状态进行分解找到相应的子状态和状态转换关系
在不符合条件1的情况下共有以下几种合法的状态
- 只含2
- 只含2、0
- 只含2、3
- 只含2、0、1
- 只含2、0、3
- 含4种数字
可以用dp[i] [j], j=0,1,2,3,4,5,来表示长度为i的整数,满足j状态的个数
于是有下面的状态转移方程:
dp[i][0]=1;//只含2
dp[i][1]=(2*dp[i-1][1]%mod+dp[i-1][0])%mod;//只含2、0 末尾0或2、末尾0
dp[i][2]=(dp[i-1][2]+dp[i-1][0])%mod;//只含2、3 末尾3
dp[i][3]=(2*dp[i-1][3]%mod+dp[i-1][1])%mod;//只含2、0、1 末尾2或1、末尾1
dp[i][4]=((2*dp[i-1][4]%mod+dp[i-1][2])%mod+dp[i-1][1])%mod;//只含2、0、3 末尾1或3、末尾0、末尾3
dp[i][5]=((2*dp[i-1][5]%mod+dp[i-1][4])%mod+dp[i-1][3])%mod;//含4个数字 末尾1或3
AC代码:
#include<cstring>
#include<iostream>
using namespace std;
typedef long long LL;
#define mod 1000000007
LL dp[1001][6];
void solve(int n)
{
memset(dp,0,sizeof(dp));
dp[1][0]=1;
for(int i=2;i<=n;++i)
{
dp[i][0]=1;//只含2
dp[i][1]=(2*dp[i-1][1]%mod+dp[i-1][0])%mod;//只含2、0 末尾0或2、末尾0
dp[i][2]=(dp[i-1][2]+dp[i-1][0])%mod;//只含2、3 末尾3
dp[i][3]=(2*dp[i-1][3]%mod+dp[i-1][1])%mod;//只含2、0、1 末尾2或1、末尾1
dp[i][4]=((2*dp[i-1][4]%mod+dp[i-1][2])%mod+dp[i-1][1])%mod;//只含2、0、3 末尾1或3、末尾0、末尾3
dp[i][5]=((2*dp[i-1][5]%mod+dp[i-1][4])%mod+dp[i-1][3])%mod;//含4个数字 末尾1或3
}
}
int main()
{
int n;
cin>>n;
solve(n);
cout<<dp[n][5]<<endl;
return 0;
}