CCF CSP201312-4有趣的数

CCF CSP201312-4有趣的数

题目描述

问题描述

我们把一个数称为有趣的,当且仅当:
  1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次。
  2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前。
  3. 最高位数字不为0。
  因此,符合我们定义的最小的有趣的数是2013。除此以外,4位的有趣的数还有两个:2031和2301。
  请计算恰好有n位的有趣的数的个数。由于答案可能非常大,只需要输出答案除以1000000007的余数。

输入格式

输入只有一行,包括恰好一个正整数n (4 ≤ n ≤ 1000)。

输出格式

输出只有一行,包括恰好n 位的整数中有趣的数的个数除以1000000007的余数。

样例输入

4

样例输出

3

要点分析

此题是一道典型的数位DP类的题目,需要对末状态进行分解找到相应的子状态和状态转换关系

在不符合条件1的情况下共有以下几种合法的状态

  1. 只含2
  2. 只含2、0
  3. 只含2、3
  4. 只含2、0、1
  5. 只含2、0、3
  6. 含4种数字

可以用dp[i] [j], j=0,1,2,3,4,5,来表示长度为i的整数,满足j状态的个数

于是有下面的状态转移方程:

dp[i][0]=1;//只含2
dp[i][1]=(2*dp[i-1][1]%mod+dp[i-1][0])%mod;//只含2、0  末尾0或2、末尾0
dp[i][2]=(dp[i-1][2]+dp[i-1][0])%mod;//只含2、3 末尾3
dp[i][3]=(2*dp[i-1][3]%mod+dp[i-1][1])%mod;//只含2、0、1 末尾2或1、末尾1
dp[i][4]=((2*dp[i-1][4]%mod+dp[i-1][2])%mod+dp[i-1][1])%mod;//只含2、0、3 末尾1或3、末尾0、末尾3
dp[i][5]=((2*dp[i-1][5]%mod+dp[i-1][4])%mod+dp[i-1][3])%mod;//含4个数字  末尾1或3

AC代码:

#include<cstring>
#include<iostream>
using namespace std;
typedef long long LL;
#define mod 1000000007

LL dp[1001][6];

void solve(int n)
{
    memset(dp,0,sizeof(dp));
    dp[1][0]=1;
    for(int i=2;i<=n;++i)
    {
        dp[i][0]=1;//只含2
        dp[i][1]=(2*dp[i-1][1]%mod+dp[i-1][0])%mod;//只含2、0  末尾0或2、末尾0
        dp[i][2]=(dp[i-1][2]+dp[i-1][0])%mod;//只含2、3 末尾3
        dp[i][3]=(2*dp[i-1][3]%mod+dp[i-1][1])%mod;//只含2、0、1 末尾2或1、末尾1
        dp[i][4]=((2*dp[i-1][4]%mod+dp[i-1][2])%mod+dp[i-1][1])%mod;//只含2、0、3 末尾1或3、末尾0、末尾3
        dp[i][5]=((2*dp[i-1][5]%mod+dp[i-1][4])%mod+dp[i-1][3])%mod;//含4个数字  末尾1或3
    }
}

int main()
{
    int n;
    cin>>n;
    solve(n);
    cout<<dp[n][5]<<endl;
    return 0;
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 像素格子 设计师:CSDN官方博客 返回首页