怎样记忆Precision、Recall?

首先,明确符号:
TP(True Posive):标签为正,预测为正
TN(True Negative):标签为负,预测为负
FP(False Positive):标签为负,预测为正
FN(False Negative):标签为正,预测为负

于是:
TP+FP:预测为正的所有样本
TP+FN:标签为正的所有样本

现在开始画图。

图1:

其中大矩形表示所有样本,左边的矩形表示正样本,右边的矩形表示负样本。

图2:
在这里插入图片描述
现在对所有样本进行预测。其中蓝色圆圈以内预测为正,蓝色圆圈以外预测为负。

图3:
在这里插入图片描述
自然地,就得到了图3。

有了图3以后,直接从维基百科搬图4:
在这里插入图片描述
如最下方的等式所示:
Precision:TP在圆形中的比例
Recall:TP在左边矩形中的比例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值