每日一更27

F[x] 次数大于1 的多项式 f(x)类比筛法( 多项式的根)若有一次因式 则f(x)可约 定理1 (余数定理 ) F[x]中 用 x-c 去除 f(x)所得的余式为 f(c) 证明 f(x)=h(x)(x-c)+r 属于F 由一元多项式环的通用性得x用c代入 从上式得f(c)=h (c)(c-c)+r=r
推论在F[x]中 x-c|f(x)相互推出f(c)=0 引出多项式的根 定义 1 f(x)属于F[x],若c属于F使得f(c)=0则称c是f(x)在F中的一个根 若域E>=F有α属于E 使得f(α)=0则称α是f(x)在E中的一个根 定理2 (B e z o u t定理) 在F[x]中x-c|f(x)相互推出c是f(x)在F中的一个根 (综合除法可以去除 但这个转化特别好判断可约 把不同方向的东西联系在一起 )若x-c是f(x)的k重因式 则称c是f(x)
定理 三 设n>0 在F中的k重根 对应k重因式 F[x]中 n(n>=0)次多项式f(x)在F中 至多 有n个 根 (重根按重数计算)证明 f(x)在F[x]中因式分解 f(x)=a(x-c 1) 的r 1次幂····(x-c s)的r s次幂 p 1的l 1次幂(x)·····p t的l t 次幂(x) ( 1)
其中 c 1 ,····c s 是F中两两不等的不可约多项式 r i>=0 i=1,2,···s l j>=0,j=1,2···t。 比较(1)式两边多项式的次数左边是n次>= 右边是 r 1+····+r s (2)
当n=0 时零次多项式 显然在F中没有根 推论2 F[x]中 次数<=n的多项式h(x)若在F[x]中有n+1个根 则h(x)=0多项式 反证法 定理4 F[x]中 f(x)和g(x)都是次数<=n的多项式若在F中 有n+1个不同的元素 c 1 c 2 ···c n+1使得f(c i)=g(c i) i=1,2····n+1 则 f(x)=g(x) 是否相等证明 做差 令h(x)=f(x)-g(x)由已知 得 h(c i)=f(c i)-g(c i)=0 i=1,2····n+1 于是c 1, c 2 ······c n+1 都是h(x)在F中的根又 deg h( x)<=(n)max{deg f(x),deg g(x)} 有推论2 得h(x)=0 从而 f(x)=g(x)。

©️2020 CSDN 皮肤主题: 黑客帝国 设计师:上身试试 返回首页