SDUT数据结构PTA专题(实验六)题解

53 篇文章 8 订阅
15 篇文章 0 订阅

7-1 列出连通集 (25 分)

#include<bits/stdc++.h>
#define eb emplace_back
#define ll long long
const int N = 2e5 + 10;
const int M = 111;
using namespace std;

int n,e;  // 点数、边数
int mp[M][M];  // 建图
bool st[N];  // 标记数组

void DFS(int x){  // DFS
    st[x]=1;   // 当前点已走过
    cout<<" "<<x;  // 输出
    for(int i=0;i<n;i++){  // 遍历能到达的边
        if(!st[i]&&mp[x][i]) DFS(i);
    }
}

void BFS(int x){  // BFS
    queue<int>q;  //定义队列
    q.push(x);  // 当前点入队
    st[x]=1;  //当前点已走过
    while(q.size()){  
        auto t=q.front();  //取队头
        q.pop();
        cout<<" "<<t;  // 输出
        for(int i=0;i<n;i++){ // 遍历能到达的边
            if(!st[i]&&mp[t][i]){
                st[i]=1;
                q.push(i);
            }
        }
    }
}

inline void solve(){
    cin>>n>>e;
    for(int i=1;i<=e;i++){  // 建图
        int u,v;
        cin>>u>>v;
        mp[u][v]=mp[v][u]=1;
    }
    for(int i=0;i<n;i++){  // 输出DFS结果
        if(!st[i]){
            cout<<"{";
            DFS(i);
            cout<<" }\n";
        }
    }
    memset(st,0,sizeof st);  // 清空st标记数组
    for(int i=0;i<n;i++){  // 输出BFS结果
        if(!st[i]){
            cout<<"{";
            BFS(i);
            cout<<" }\n";
        }
    }
}

int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    solve();
    return 0;
}

7-2 哈利·波特的考试 (25 分)

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
const int N = 1e5 + 10;
using namespace std;

int n,m; // 点数、边数
int g[111][111];   // 存图

void Floyd(){  // Floyd求最短路(多源汇最短路)
    for(int k=1;k<=n;k++){
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
            }
        }
    }
}

inline void solve(){
    cin>>n>>m;
    int u,v,k;
    for(int i=1;i<=n;i++){   // 初始化
        for(int j=1;j<=n;j++){
            if(i==j) g[i][j]=0;
            else g[i][j]=inf;
        }
    }
    while(m--){ // 建图
        cin>>u>>v>>k;
        g[u][v]=g[v][u]=k;
    }
    Floyd();  // Floyd求最短路
    int id=0,minn=inf;
    for(int i=1;i<=n;i++){
        int maxn=0;
        for(int j=1;j<=n;j++){
            maxn=max(maxn,g[i][j]); // 每个动物需要的最大值
        }
        if(minn>maxn){  // 最大消耗值的最小值
            minn=maxn;
            id=i;
        }
    }
    if(id) cout<<id<<" "<<minn<<endl;
    else cout<<"0"<<endl;
}

int main(){
    solve();
    return 0;
}

7-3 旅游规划 (25 分)

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
const int N = 1e5 + 10;
const int M = 511;
using namespace std;

int n,m,s,e;  // 点数、边数、起点、终点
int w[M][M];  // 存距离
int p[M][M];  // 存话费

void Floyd(){  // Floyd求最短路
    for(int k=0;k<n;k++){
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                if(w[i][j]>w[i][k]+w[k][j]){
                    w[i][j]=w[i][k]+w[k][j];
                    p[i][j]=p[i][k]+p[k][j];
                }else if(w[i][j]==w[i][k]+w[k][j]){
                    if(p[i][j]>p[i][k]+p[k][j]){
                        p[i][j]=p[i][k]+p[k][j];
                    }
                }
            }
        }
    }
    cout<<w[s][e]<<" "<<p[s][e]<<endl; // 输出答案
}

inline void solve(){
    cin>>n>>m>>s>>e;
    memset(w,0x3f,sizeof w); // 距离初始化
    memset(p,0x3f,sizeof p); // 花费初始化
    for(int i=0;i<n;i++) w[i][i]=p[i][i]=0;
    while(m--){  // 建图
        int u,v,W,P;
        cin>>u>>v>>W>>P;
        w[u][v]=w[v][u]=W;
        p[u][v]=p[v][u]=P;
    }
    Floyd();
}

int main(){
    solve();
    return 0;
}

7-4 公路村村通 (30 分)

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
const int N = 1e5 + 10;
const int M = 3111;
using namespace std;

int n,m;
int res=0;
int vis[N];

struct  node{  // 结构体存图
    int u,v,w;
}dp[N];

bool cmp(node x,node y){  //排序规则
    return x.w<y.w;
}

void init(){  // 初始化
    for(int i=1;i<=M;i++) vis[i]=i;
}

int Find(int x){  // 并查集
    if(x!=vis[x]) vis[x]=Find(vis[x]);
    return vis[x];
}

bool Merge(int x,int y){  // 合并 
    int xx=Find(x);
    int yy=Find(y);
    if(xx!=yy){
        vis[xx]=yy;
        return 0;
    }
    return 1;
}

void Kruskal(){  // Kruskal构造最小生成树
    int tot=0;
    for(int i=1;i<=m;i++){
        if(tot==n-1) break;
        if(!Merge(dp[i].u,dp[i].v)){
            res+=dp[i].w;
            tot++;
        }
    }
    if(tot==n-1) cout<<res<<endl;  // 联通输出结果
    else cout<<-1<<endl;  // 不连通输出-1
}

inline void solve(){
    cin>>n>>m;
    init();  // 初始化
    for(int i=1;i<=m;i++) cin>>dp[i].u>>dp[i].v>>dp[i].w;  // 建图
    sort(dp+1,dp+1+m,cmp); // 排序
    Kruskal(); // Kruskal构建最小生成树
}

int main(){
    solve();
    return 0;
}

7-5 任务调度的合理性 (25 分)

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
const int N = 1e5 + 10;
using namespace std;

int n;
int in[N];
int mp[111][111];

bool Topo(){  // 拓扑排序判断合法性
    queue<int>q;
    for(int i=1;i<=n;i++){ // 入度为0入队
        if(!in[i]) q.push(i);
    }
    int cnt=0;  // 计数
    while(q.size()){
        auto t=q.front();  // 取队首
        q.pop();  // 出队
        cnt++;  
        in[t]--;  // 入度变为-1
        for(int i=1;i<=n;i++){
            if(mp[t][i]){
                in[i]--;  //入度-1
                if(!in[i]) q.push(i); // 入度为0入队
            }
        }
    }
    if(cnt==n) return 1;  // 合法
    else return 0;  //不合法
}

inline void solve(){
    cin>>n; // 输入点数
    for(int i=1;i<=n;i++){  // 建图
        int k;
        cin>>k;
        if(k){
            while(k--){
                int x;
                cin>>x;
                mp[i][x]=1;  // 连边
                in[x]++; // 到达点入度+1
            }
        }
    }
    if(Topo()) cout<<1<<endl;
    else cout<<0<<endl;
}

int main(){
    solve();
    return 0;
}

本题测试点(慎用)
在这里插入图片描述

7-6 家庭房产 (25 分)

#include<bits/stdc++.h>
#define ll long long
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,b) for(auto i=a;i<=b;++i)
const int N = 1e5 + 10;
const int M = 555;
using namespace std;

struct data{
    int id;
    int fa;
    int mo;
    int num;
    int area;
    int cp[M];
}dp[N];

struct node{
    int id;
    int peo;
    double num;
    double area;
    bool flag=0;
}mp[N];

int fat[N];
bool vis[N];

int Find(int x){  // 并查集
    if(fat[x]!=x) fat[x]=Find(fat[x]);
    return fat[x];
}


void Merge(int u,int v){  // 合并
    int x=Find(u);
    int y=Find(v);
    if(x>y) fat[x]=y;
    else if(x<y) fat[y]=x;
}

bool cmp(node x,node y){  // 排序
    if(x.area!=y.area) return x.area>y.area;
    else return x.id<y.id;
}

void init(int n){  // 初始化
    rep(i,0,10000) fat[i]=i;
}

void solve(){
    int n;
    int k;
    int tot=0;
    cin>>n;
    init(n);
    rep(i,0,n-1){
        cin>>dp[i].id>>dp[i].fa>>dp[i].mo>>k;
        vis[dp[i].id]=1;
        if(dp[i].fa!=-1){
            vis[dp[i].fa]=1;
            Merge(dp[i].fa,dp[i].id);
        }
        if(dp[i].mo!=-1){
            vis[dp[i].mo]=1;
            Merge(dp[i].mo,dp[i].id);
        }
        rep(j,0,k-1){
            cin>>dp[i].cp[j];
            vis[dp[i].cp[j]]=1;
            Merge(dp[i].cp[j],dp[i].id);
        }
        cin>>dp[i].num>>dp[i].area;
    }
    rep(i,0,n-1){
        int id=Find(dp[i].id);
        mp[id].id=id;
        mp[id].num+=dp[i].num;
        mp[id].area+=dp[i].area;
        mp[id].flag=1;
    }
    rep(i,0,10000){
        if(vis[i]) mp[Find(i)].peo++;
        if(mp[i].flag) tot++;
    }
    rep(i,0,10000){
        if(mp[i].flag){
            mp[i].num=(double)(mp[i].num*1.0/mp[i].peo);
            mp[i].area=(double)(mp[i].area*1.0/mp[i].peo);
        }
    }
    sort(mp,mp+10000,cmp);
    cout<<tot<<endl;
    rep(i,0,tot-1){
        printf("%04d %d %.3f %.3f\n",mp[i].id,mp[i].peo,mp[i].num,mp[i].area);
    }
}

int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    solve();
	return 0;
}



7-7 最短工期 (25 分)

#include<bits/stdc++.h>
#define PII pair<int,int>
#define eb emplace_back
#define x first
#define y second
#define inf 0x3f3f3f3f
const int N = 1e5 + 10;
using namespace std;

int n,m;
int in[N];
int res[N];
int dist[N];
int tot=0;

vector<PII>g[N];

void topo(){  // 拓扑求关键路径
    queue<int>q;
    for(int i=0;i<n;i++){
        if(!in[i]) q.push(i);
    }
    while(q.size()){
        auto u=q.front();
        q.pop();
        res[tot++]=u;
        for(auto i:g[u]){
            auto v=i.x,w=i.y;
            in[v]--;
            if(!in[v]) q.push(v);
            if(dist[v]<dist[u]+w) dist[v]=dist[u]+w;
        }
    }
}

inline void solve(){
    cin>>n>>m;
    while(m--){
        int u,v,w;
        cin>>u>>v>>w;
        g[u].eb(PII{v,w});  // 存图
        in[v]++;  // 入度++
    }
    topo();
    if(tot==n){
        int maxn=0;
        for(int i=0;i<n;i++) maxn=max(maxn,dist[i]);
        cout<<maxn<<endl;
    }else cout<<"Impossible"<<endl;
}

int main(){
    solve();
    return 0;
}

7-8 路径判断 (20 分)

#include<bits/stdc++.h>
#define eb emplace_back
#define ll long long
const int N = 2e5 + 10;
const int M = 111;
using namespace std;

int n,m; // 点数、边数
int s,e;  // 起始点
int mp[M][M];  // 存图
bool st[M];  // 标记数组

bool BFS(){  // BFS判断是否有路径
    queue<int>q;
    q.push(s);
    while(q.size()){
        auto x=q.front();
        q.pop();
        st[x]=1;
        if(x==e) return 1;
        for(int i=0;i<n;i++){
            if(!st[i]&&mp[x][i]){
                q.push(i);
            }
        }
    }
    return 0;
}

inline void solve(){
    cin>>n>>m;
    int u,v;
    while(m--){  // 建图
        cin>>u>>v;
        mp[u][v]=mp[v][u]=1;
    }
    cin>>s>>e; //  输入起始点
    if(BFS()) cout<<"There is a path between "<<s<<" and "<<e<<"."<<endl; // 若有路径
	else cout<<"There is no path between "<<s<<" and "<<e<<"."<<endl;  // 无路径
}

int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    solve();
    return 0;
}


7-9 最短路径 (20 分)

#include<bits/stdc++.h>
#define ll long long
#define mem(a,b) memset(a,b,sizeof a)
#define inf 0x3f3f3f3f
#define PII pair<int,int>
#define PLL pair<ll,ll>
#define x first
#define y second
const int N = 11;
using namespace std;

int n,m,s,ed;  //  点数、边数、起点、终点
int g[N][N];  // 存边

void Floyd(){  // Floyd 求最短路
    for(int k=0;k<n;k++){
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
            }
        }
    }
}

inline void solve(){
    cin>>n>>m;
    mem(g,inf);
    while(m--){  // 存边
        int u,v;
        cin>>u>>v;
        g[u][v]=g[v][u]=1;
    }
    cin>>s>>ed;
    Floyd();
    if(s==ed) cout<<"The length of the shortest path between "<<s<<" and "<<ed<<" is "<<0<<"."<<endl;
    else if(g[s][ed]!=inf) cout<<"The length of the shortest path between "<<s<<" and "<<ed<<" is "<<g[s][ed]<<"."<<endl;
    else cout<<"There is no path between "<<s<<" and "<<ed<<"."<<endl;
}

int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    solve();
    return 0;
}

7-10 邻接矩阵表示法创建无向图 (20 分)

#include<bits/stdc++.h>
#define eb emplace_back
#define ll long long
const int N = 2e5 + 10;
const int M = 111;
using namespace std;

int du[N];  // 记录度

inline void solve(){
    int n,m;
    cin>>n>>m;
    string s;
    cin>>s;
    char u,v;
    while(m--){
        cin>>u>>v;
        //cout<<u<<" "<<v<<"*"<<endl;
        du[u-'A']++;  // 度++
        du[v-'A']++;  // 度++
    }
    for(int i=0;i<s.size();i++){  // 输出
        if(i) cout<<" ";
        cout<<du[s[i]-'A'];
    }
    cout<<endl;
}

int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    solve();
    return 0;
}


7-11 邻接表创建无向图 (20 分)

#include<bits/stdc++.h>
#define eb emplace_back
#define ll long long
const int N = 2e5 + 10;
const int M = 111;
using namespace std;

int du[N];  // 记录度

inline void solve(){
    int n,m;
    cin>>n>>m;
    string s;
    cin>>s;
    char u,v;
    while(m--){
        cin>>u>>v;
        //cout<<u<<" "<<v<<"*"<<endl;
        du[u-'A']++;  // 度++
        du[v-'A']++;  // 度++
    }
    for(int i=0;i<s.size();i++){  // 输出
        if(i) cout<<" ";
        cout<<du[s[i]-'A'];
    }
    cout<<endl;
}

int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    solve();
    return 0;
}


7-12 Dijkstra算法(模板) (30 分)

#include<bits/stdc++.h>
#define ll long long
#define mem(a,b) memset(a,b,sizeof a)
#define inf 0x3f3f3f3f
#define PII pair<int,int>
#define PLL pair<ll,ll>
#define x first
#define y second
const int N = 2e5 + 10;
using namespace std;

int n,m,s,ed;  //  点数、边数、起点、终点
int e[N],w[N],ne[N],h[N],idx;  // 邻接表存储所有边
ll dist[N]; // 记录距离
bool st[N]; // 标记是否走过

void add(int u,int v,int k){  //加边
    e[idx]=v,w[idx]=k,ne[idx]=h[u],h[u]=idx++;
}

void Dijkstra(){  // Dijkstra求最短路
    mem(dist,0x3f);  // 距离初始化
    priority_queue<PII,vector<PII>,greater<PII> >q;  // 定义优先队列
    q.push({0,s}); // 把起点放入队列
    dist[s]=0;    // 起点距离变为0
    while(q.size()){
        auto t=q.top(); q.pop();
        int dis=t.x,ver=t.y;
        if(st[ver]) continue;
        st[ver]=1;
        for(int i=h[ver];~i;i=ne[i]){  // 松弛操作
            int j=e[i];
            if(dist[j]>dis+w[i]){
                dist[j]=dis+w[i];
                q.push({dist[j],j});
            }
        }
    }
    cout<<dist[ed]<<endl;
}

inline void solve(){
    cin>>n>>m>>s>>ed;
    int u,v,k;
    mem(h,-1);  // 节点清空
    while(m--){  // 加边
        cin>>u>>v>>k;
        add(u,v,k);
        add(v,u,k);
    }
    Dijkstra();
}

int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    solve();
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值