Matlab实现序贯变分模态分解(SVMD)

        大家好,我是带我去滑雪!

       序贯变分模态分解(SVMD) 是一种信号处理和数据分析方法。它可以将复杂信号分解为一系列模态函数,每个模态函数代表信号中的特定频率分量。 SVMD 的主要目标是提取信号中的不同频率分量并将其重构为原始信号。SVMD的基本原理是通过变分模态分解的方式将信号分解为多个模态函数。在每个迭代步骤中,SVMD 通过最小化信号和模态函数之间的差异来更新模态函数。重复这个过程直到收敛。得到的模态函数可用于重建原始信号。

        SVMD 的另一个关键特征是连续分解。在每个迭代步骤中,SVMD 从信号中提取主频率分量并将其从信号中删除。这样,每次迭代步骤都会提取信号中的一个频率分量,直到提取完所有频率分量。这种逐次分解方法可以更好地捕获信号中的不同频率分量。SVMD 在信号处理和数据分析方面有着广泛的应用。它可用于去噪、特征提取、频谱分析等多个领域。通过将信号分解为模态函数,SVMD可以更好地理解和描述信号的频率特性。这对于信号处理和数据分析非常重要。SVMD的数据重构是将分解后的模态函数重新组合成原始信号的过程。通过各模态函数的加权相加即可得到重构信号。这个过程可以用来恢复原始信号的频率特性,并且可以根据需要进一步分析和处理。

         综上所述,逐次变分模态分解是一种有效的信号处理和数据分析方法。它可以将复杂信号分解为多个模态函数,并可以通过数据重构将它们重新组合成原始信号。 SVMD有着广泛的应用范围,对于理解和描述信号的频率特性非常有帮助。通过深入研究和应用SVMD,我们可以更好地处理和分析各类信号和数据。下面开始代码实战。

(1)SVMD实现

function [u,u_hat,omega]=svmd(signal,maxAlpha,tau,tol,stopc,init_omega)

%% ------------ Part 1: Start initializing

y = sgolayfilt(signal,8,25); %--filtering the input to estimate the noise
signoise=signal-y; %-estimating the noise

save_T = length(signal);
fs = 1/save_T;




%______________________________________________________________________
%
%           Mirroring the signal and noise part to extend
%______________________________________________________________________
T = save_T;
f_mir=zeros(1,T/2);
f_mir_noise=zeros(1,T/2);
f_mir(1:T/2) = signal(T/2:-1:1);
f_mir_noise(1:T/2) = signoise(T/2:-1:1);
f_mir(T/2+1:3*T/2) = signal;
f_mir_noise(T/2+1:3*T/2) = signoise;
f_mir(3*T/2+1:2*T) = signal(T:-1:T/2+1);
f_mir_noise(3*T/2+1:2*T) = signoise(T:-1:T/2+1);

f = f_mir;
fnoise=f_mir_noise;
%______________________________________________________________________
%______________________________________________________________________



T = length(f);%------------- time domain (t -->> 0 to T)
t = (1:T)/T;

udiff = tol+eps; %------ update step

omega_freqs = t-0.5-1/T;%------------- discretization of spectral domain



%______________________________________________________________________
%
%     FFT of signal(and Hilbert transform concept=making it one-sided)
%______________________________________________________________________

f_hat = fftshift((fft(f)));
f_hat_onesided = f_hat;
f_hat_onesided(1:T/2) =0;
f_hat_n = fftshift((fft(fnoise)));
f_hat_n_onesided = f_hat_n;
f_hat_n_onesided(1:T/2) =0;
%______________________________________________________________________
%______________________________________________________________________

noisepe=norm(f_hat_n_onesided,2).^2;%------------- noise power estimation


N = 300;%------------ Max. number of iterations to obtain each mode


omega_L = zeros(N, 1);%----------- Initializing omega_d

switch nargin
    case 6
        if init_omega == 0
            omega_L(1) = 0;
        else
            omega_L(1) = sort(exp(log(fs) + (log(0.5)-log(fs))*rand(1,1)));
        end
    otherwise
        init_omega = 0;
        omega_L(1) = 0;
end

minAlpha=10; %------ the initial value of alpha
Alpha=minAlpha; %------ the initial value of alpha
alpha=zeros(1,1);
%----------- dual variables vector
lambda = zeros(N, length(omega_freqs));

%---------- keeping changes of mode spectrum
u_hat_L = zeros(N, length(omega_freqs));

n = 1; %------------------ main loop counter

m=0;      %------ iteration counter for increasing alpha
SC2=0; % ------ main stopping criteria index
l=1;  %------ the initial number of modes
bf=0;  % ----- bit flag to increase alpha
BIC=zeros(1,1);  % ------- the initial value of Bayesian index

h_hat_Temp=zeros(2, length(omega_freqs));%-initialization of filter matrix

u_hat_Temp=zeros(1,length(omega_freqs),1);%- matrix1 of modes 
u_hat_i=zeros(1, length(omega_freqs));%- matrix2 of modes

n2=0; % ---- counter for initializing omega_L


polm=zeros(2,1);  % ---- initializing Power of Last Mode index

omega_d_Temp=zeros(1,1);%-initialization of center frequencies vector1
sigerror=zeros(1,1);%initializing signal error index for stopping criteria
gamma=zeros(1,1);%----initializing gamma
normind=zeros(1,1);







%% ---------------------- Part 2: Main loop for iterative updates
while (SC2~=1)
    
    while (Alpha(1,1)<(maxAlpha+1)) 
        
        while ( udiff > tol &&  n < N ) 
            
            
            %------------------ update uL
            u_hat_L(n+1,:)= (f_hat_onesided+...
                ((Alpha(1,1).^2)*(omega_freqs - omega_L(n,1)).^4).*u_hat_L(n,:)+...
                lambda(n,:)/2)./(1+(Alpha(1,1).^2)*(omega_freqs - omega_L(n,1)).^4 ...
                .*((1+(2*Alpha(1,1))*(omega_freqs - omega_L(n,1)).^2))+sum(h_hat_Temp));
            
            
            %------------------ update omega_L
            omega_L(n+1,1) = (omega_freqs(T/2+1:T)*(abs(u_hat_L(n+1, T/2+1:T)).^2)')/sum(abs(u_hat_L(n+1,T/2+1:T,1)).^2);
            
            
            %------------------ update lambda (dual ascent)
            lambda(n+1,:) = lambda(n,:) + tau*(f_hat_onesided...
                -(u_hat_L(n+1,:) + (((Alpha(1,1).^2)*(omega_freqs - omega_L(n,1)).^4....
                .*(f_hat_onesided - u_hat_L(n+1,:)-sum(u_hat_i)+lambda(n,:)/2)-sum(u_hat_i))...
                ./(1+(Alpha(1,1).^2)*(omega_freqs - omega_L(n,1)).^4 ))+...
                sum(u_hat_i)));
            
            
            udiff = eps;

            %------------------ 1st loop criterion
            udiff = udiff + (1/T*(u_hat_L(n+1,:)-u_hat_L(n,:))*conj((u_hat_L(n+1,:)-u_hat_L(n,:)))')...
                / (1/T*(u_hat_L(n,:))*conj((u_hat_L(n,:)))');
            
            udiff = abs(udiff);
            
            n = n+1;
            
        end
        
        
        
        %% ---- Part 3: Increasing Alpha to achieve a pure mode
        
        if abs(m-log(maxAlpha))> 1
            m=m+1;
        else
            m=m+.05;
            bf=bf+1;
        end
        if  bf>=2
            Alpha=Alpha+1;
        end
        if   Alpha(1,1)<=(maxAlpha-1)  %exp(SC1)<=(maxAlpha)
            
            if (bf ==1)
                Alpha(1,1)=maxAlpha-1;
            else
                Alpha(1,1)=exp(m);
            end
            
            omega_L=omega_L(n,1);
            
            % ------- Initializing
            udiff = tol+eps; % update step
            
            temp_ud = u_hat_L(n,:);%keeping the last update of obtained mode
            
            n = 1; % loop counter
            
            lambda = zeros(N, length(omega_freqs));
            u_hat_L = zeros(N, length(omega_freqs));
            u_hat_L(n,:)=temp_ud;
            
        end
    end
    
    
    
    
    %% Part 4: Saving the Modes and Center Frequencies
    
    omega_L=omega_L(omega_L>0);
    u_hat_Temp(1,:,l)=u_hat_L(n,:);
    omega_d_Temp(l)=omega_L(n-1,1);
    alpha(1,l)=Alpha(1,1);
    Alpha(1,1)=minAlpha;
    bf=0;
    %------------------------------initializing omega_L
    if init_omega >0
        ii=0;
        while (ii<1 && n2 < 300)
            
            omega_L = sort(exp(log(fs) + (log(0.5)-log(fs))*rand(1,1)));
            
            checkp=abs(omega_d_Temp-omega_L);
            
            if (size(find(checkp<0.02),2)<=0) % it will continue if difference between previous vector of omega_d and the current random omega_plus is about 2Hz
                ii=1;
            end
            n2=n2+1;
        end
        
    else
        omega_L=0;
    end
    udiff = tol+eps; % update step

    lambda = zeros(N, length(omega_freqs));
    
    gamma(l)=1;
    
    
    h_hat_Temp(l,:)=gamma(l) ./((alpha(1,l)^2)*...
        (omega_freqs - omega_d_Temp(l)).^4);
    
    %---------keeping the last desired mode as one of the extracted modes
    u_hat_i(l,:)=u_hat_Temp(1,:,l);
    
    
    
    
    
    %%  Part 5: Stopping Criteria:
    
    if nargin >=5 % checking input of the function
        
        switch stopc
            
            case 1
                %-----------------In the Presence of Noise
                if size(u_hat_i,1) == 1
                    sigerror(l)=  norm((f_hat_onesided-(u_hat_i)),2)^2;
                else
                    sigerror(l)=  norm((f_hat_onesided-sum(u_hat_i)),2)^2;
                end
                
                if ( n2 >= 300 || sigerror(l) <= round(noisepe))
                    SC2=1;
                end
            case 2
                %-----------------Exact Reconstruction
                sum_u=sum(u_hat_Temp(1,:,:),3); % -- sum of current obtained modes
                
                normind(l)=(1/T) *(norm(sum_u-f_hat_onesided).^2)...
                    ./((1/T) * norm(f_hat_onesided).^2);
                if( n2 >= 300 || normind(l) <.005 )
                    SC2=1;
                end
            case 3
                %------------------Bayesian Method
                if size(u_hat_i,1) == 1
                    sigerror(l)= norm((f_hat_onesided-(u_hat_i)),2)^2;
                    
                else
                    sigerror(l)= norm((f_hat_onesided-sum(u_hat_i)),2)^2;
                    
                end
                BIC(l)=2*T*log(sigerror(l))+(3*l)*log(2*T);
                
                if(l>1)
                    if(BIC(l)>BIC(l-1))
                        SC2=1;
                    end
                end
                
            otherwise
                %------------------Power of the Last Mode
                if (l<2)
                    polm(l)=norm((4*Alpha(1,1)*u_hat_i(l,:)./(1+2*Alpha(1,1)*...
                        (omega_freqs-omega_d_Temp(l)).^2))*u_hat_i(l,:)',2);
                    polm_temp=polm(l);
                    polm(l)=polm(l)./max(polm(l));
                else
                    polm(l)=norm((4*Alpha(1,1)*u_hat_i(l,:)./(1+2*Alpha(1,1)*...
                        (omega_freqs-omega_d_Temp(l)).^2))*u_hat_i(l,:)',2);
                    polm(l)=polm(l)./polm_temp;
                end
                
                if (l>1 && (abs(polm(l)-polm(l-1))<0.001) )
                    SC2=1;
                end
        end
    else
        %------------------Power of the Last Mode
        if (l<2)
            polm(l)=norm((4*Alpha(1,1)*u_hat_i(l,:)./(1+2*Alpha(1,1)*...
                (omega_freqs-omega_d_Temp(l)).^2))*u_hat_i(l,:)',2);
            polm_temp=polm(l);
            polm(l)=polm(l)./max(polm(l));
        else
            polm(l)=norm((4*Alpha(1,1)*u_hat_i(l,:)./(1+2*Alpha(1,1)*...
                (omega_freqs-omega_d_Temp(l)).^2))*u_hat_i(l,:)',2);
            polm(l)=polm(l)./polm_temp;
        end
        
        if (l>1 && (abs(polm(l)-polm(l-1))<tol) )
            SC2=1;
        end
    end
    
    
    
    
    
 %% Part 6: Resetting the counters and initializations  
    u_hat_L = zeros(N, length(omega_freqs));
    
    
    n = 1; % ----- reset the loop counter
    
    
    l=l+1; %---(number of obtained modes)+1
    m=0;
    n2=0;
end





%% ------------------ Part 7: Signal Reconstruction

omega = omega_d_Temp;
L=length(omega); %------number of modes


u_hat = zeros(T, L);
u_hat((T/2+1):T,:) = squeeze(u_hat_Temp(1,(T/2+1):T,:));
u_hat((T/2+1):-1:2,:) = squeeze(conj(u_hat_Temp(1,(T/2+1):T,:)));
u_hat(1,:) = conj(u_hat(end,:));


u = zeros(L,length(t));

for l = 1:L
    u(l,:)=real(ifft(ifftshift(u_hat(:,l))));
end

[omega,indic]=sort(omega);
u=u(indic,:);
%---------- remove mirror part
u = u(:,T/4+1:3*T/4);

%--------------- recompute spectrum
clear u_hat;
for l = 1:L
    u_hat(:,l)=fftshift(fft(u(l,:)))';
end

end

(2)SVMD绘图

function Huatu_svmd(emd_imf,signal,t,Fs)
if nargin <4
figure('Name','SVMD分解与各IMF分量时域图','Color','white');set(gcf, 'Position', [400 100 600 700]);
subplot(size(emd_imf,1)+1,1,1);
plot(t,signal,'k');grid on;
ylabel('\fontname{宋体}原始数据');
 title('\fontname{Times new roman}SVMD\fontname{宋体}分解');
set(gca,'XTick',[]);
for i = 2:size(emd_imf,1)+1
    subplot(size(emd_imf,1)+1,1,i);
    plot(t,emd_imf(i-1,:),'k');
    ylabel(['\fontname{Times new roman}IMF',num2str(i-1)]);
    if (i ~= size(emd_imf,1)+1)
        set(gca,'XTick',[]);
    end
    if (i == size(emd_imf,1)+1)
        ylabel('\fontname{Times new roman}RSE');
        xlabel('\fontname{Times new roman}Time/\it{s}');
    end
    grid on;
end
else
figure('Name','SVMD分解与各IMF分量频谱对照图','Color','white');set(gcf, 'Position', [400 100 600 700]);
subplot(size(emd_imf,1)+1,2,1);
plot(t,signal,'k');grid on;
ylabel('\fontname{宋体}原始数据');
title('\fontname{Times new roman}SVMD\fontname{宋体}分解');
set(gca,'XTick',[]);
subplot(size(emd_imf,1)+1,2,2);
pFFT(signal,Fs);grid on;
title('\fontname{宋体}对应频谱');
set(gca,'XTick',[]);
for i = 2:size(emd_imf,1)+1
    subplot(size(emd_imf,1)+1,2,i*2-1);
    plot(t,emd_imf(i-1,:),'k');
    ylabel(['\fontname{Times new roman}IMF',num2str(i-1)]);
    if (i ~= size(emd_imf,1)+1)
        set(gca,'XTick',[]);
    end
    if (i == size(emd_imf,1)+1)
        ylabel('\fontname{Times new roman}RSE');
        xlabel('\fontname{Times new roman}Time/\it{s}');
    end
    grid on;
    subplot(size(emd_imf,1)+1,2,i*2);
    pFFT(emd_imf(i-1,:),Fs);
    if (i ~= size(emd_imf,1)+1)
        set(gca,'XTick',[]);
    end
    if (i == size(emd_imf,1)+1)
        xlabel('\fontname{Times new roman}Frequency/\it{Hz}');
    end
    grid on;
end
end

(3)测试

clc
clear
close all
SIG=importdata('NASA电容量.csv');
sig=SIG(2:161,2);%%想要分解哪一列就填几
%(1)导入时间数据来设置时间
t=SIG(2:161,2);
Fs=1/(t(2)-t(1));
%(2)设置采样率来设置时间
% N=length(sig);
% Fs=1000;%%采样频率自己设置
% t1=((0:N-1)*1/Fs)';
% SNR = 10;    
% sig = awgn(sig,SNR,'measured');   
figure('Name','原始信号');
% subplot(211);
plot(t,sig,'k');
title('\fontname{宋体}原始信号');
ylabel('\fontname{宋体}幅值');
xlabel('\fontname{Times new roman}Time/\it{s}');
% subplot(212);pFFT(sig,Fs)
% title('\fontname{宋体}频谱图');
% ylabel('\fontname{宋体}幅值');
% xlabel('\fontname{Times new roman}Frequency/\it{Hz}');
maxAlpha=1000; %compactness of mode
tau=0;%time-step of the dual ascent
tol=1e-6; %tolerance of convergence criterion;
stopc=4;%the type of stopping criteria
[svmd_imf,uhat,omega]=svmd(sig,maxAlpha,tau,tol,stopc);
Huatu_svmd(svmd_imf,sig,t);
svmd_imf=svmd_imf';

需要数据集的家人们可以去百度网盘(永久有效)获取:

链接:https://pan.baidu.com/s/173deLlgLYUz789M3KHYw-Q?pwd=0ly6
提取码:2138 


更多优质内容持续发布中,请移步主页查看。

博主的WeChat:TCB1736732074

   点赞+关注,下次不迷路!

CSDN海神之光上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b或2023b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab定制 4.4 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪(CEEMDAN)、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 1. EMD(经验模态分解,Empirical Mode Decomposition) 2. TVF-EMD(时变滤波的经验模态分解,Time-Varying Filtered Empirical Mode Decomposition) 3. EEMD(集成经验模态分解,Ensemble Empirical Mode Decomposition) 4. VMD(变分模态分解,Variational Mode Decomposition) 5. CEEMDAN(完全自适应噪声集合经验模态分解,Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise) 6. LMD(局部均值分解,Local Mean Decomposition) 7. RLMD(鲁棒局部均值分解, Robust Local Mean Decomposition) 8. ITD(固有时间尺度分解,Intrinsic Time Decomposition) 9. SVMD(逐次变分模态分解,Sequential Variational Mode Decomposition) 10. ICEEMDAN(改进的完全自适应噪声集合经验模态分解,Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise) 11. FMD(特征模式分解,Feature Mode Decomposition) 12. REMD(鲁棒经验模态分解,Robust Empirical Mode Decomposition) 13. SGMD(辛几何模态分解,Spectral-Grouping-based Mode Decomposition) 14. RLMD(鲁棒局部均值分解,Robust Intrinsic Time Decomposition) 15. ESMD(极点对称模态分解, extreme-point symmetric mode decomposition) 16. CEEMD(互补集合经验模态分解,Complementary Ensemble Empirical Mode Decomposition) 17. SSA(奇异谱分析,Singular Spectrum Analysis) 18. SWD(群分解,Swarm Decomposition) 19. RPSEMD(再生相移正弦辅助经验模态分解,Regenerated Phase-shifted Sinusoids assisted Empirical Mode Decomposition) 20. EWT(经验小波变换,Empirical Wavelet Transform) 21. DWT(离散小波变换,Discraete wavelet transform) 22. TDD(时域分解,Time Domain Decomposition) 23. MODWT(最大重叠离散小波变换,Maximal Overlap Discrete Wavelet Transform) 24. MEMD(多元经验模态分解,Multivariate Empirical Mode Decomposition) 25. MVMD(多元变分模态分解,Multivariate Variational Mode Decomposition)
### 变分模态分解 VMD 和 支持向量机 SVM 的应用及实现 #### 一、变分模态分解(VMD) VMD是一种强大的信号分解方法,它具备自适应性、鲁棒性和高计算效率等特性[^1]。这种方法通过将原始信号分解成多个固有模态函数(IMF),从而能够更有效地分析复杂的非平稳信号。 对于VMD的应用,在某些情况下为了提高其性能,会采用遗传算法对其进行优化。具体而言,子函数`GA_VMD(varargin)`实现了利用遗传算法来调整VMD中的两个重要参数——惩罚系数alpha和分解层数K,以此达到更好的分解效果[^2]。 ```matlab function [alpha, K] = GA_VMD(populationSize, maxGenerations) % 初始化种群和其他必要变量... for generation = 1:maxGenerations % 计算适应度值... % 进行选择操作... % 执行交叉变异操作... % 更新最优解(alpha, K)... end end ``` 这段MATLAB代码展示了如何定义一个简单的遗传算法框架去寻找最佳的alpha和K值组合,以便于后续使用这些参数执行VMD过程。 #### 二、支持向量机(SVM) 当涉及到时间列预测等问题时,可以考虑结合VMD与SVM构建混合模型。例如,在给定案例中提到的方法称为VMD-SVM-GWO,即先运用VMD对输入特征进行预处理,再由经过灰狼优化器(Grey Wolf Optimizer,GWO)调优后的SVM来进行最终分类或回归任务[^3]。 这种集成学习方案不仅有助于提升单个机器学习模型的表现力,而且还能充分利用不同技术的优势解决特定应用场景下的挑战。值得注意的是,除了GWO之外还可以尝试其他智能优化算法如差分进化(DE),鲸鱼优化(WOA),麻雀搜索(SSA)等进一步增强系统的泛化能力。 #### 实现流程概览: - **数据准备阶段**:从Excel文件加载待处理的数据集; - **前处理步骤**:采用VMD完成对原始数据流的有效分离; - **评估测试**:最后对比实验结果验证所提方案的实际效能。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

带我去滑雪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值