- 博客(97)
- 收藏
- 关注
原创 R实现动态条件相关模型与GARCH模型结合研究中美股市动态相关性(DCC-GARCH模型)
本期使用DCC-GARCH模型研究近20年中美股市的动态相关性。
2023-10-11 20:17:26
2460
1
原创 R语言实现向量自回归和误差修正模型——附实战代码
向量自回归(VAR)模型和误差修正模型(ECM)是时间序列分析中常用的两种模型,它们用于研究多个变量之间的动态关系。
2023-10-10 12:57:16
4052
原创 R实现数据分布特征的视觉化——多笔数据之间的比较
如果要对两笔数据或者多笔数据的分布情况进行比较,Q-Q图、柱状图、星形图都是非常好的选择,下面开始实战。
2023-10-06 21:09:13
1250
1
原创 基于频谱信息的图像去噪与恢复——使用约束最小二乘方滤波法
本期使用约束最小二乘方滤波法对图像进行去噪还原,该方法基于最小二乘方准则,可以有效克服逆波算法的不稳定性,并在应用滤波过程中加入一些额外的约束条件,以改善噪声去除效果。
2023-09-16 19:22:29
908
原创 基于粒子群优化的BP神经网络算法
基于粒子群优化的BP神经网络算法(Particle Swarm Optimization Backpropagation Neural Network,PSO-BPNN)是一种利用粒子群优化算法优化BP神经网络的算法。
2023-09-12 23:34:12
1919
原创 利用逻辑回归判断病人肺部是否发生病变
判断肺部是否发生病变可以及早发现疾病、指导治疗和监测疾病进展,以及预防和促进肺部健康,定期进行肺部评估和检查对于保护肺健康、预防疾病和提高生活质量至关重要。本期将利用相关医学临床数据结合逻辑回归判断病人肺部是否发生病变
2023-08-28 19:14:30
1053
原创 利用多种机器学习方法对爬取到的谷歌趋势某个关键词的每日搜索次数进行学习
前一期利用python爬取了谷歌趋势某个关键词的每日搜索次数,本期利用爬取的数据进行多种机器学习方法进行学习,其中方法包括:随机森林、XGBOOST、决策树、支持向量机、神经网络、K邻近等方法,并对模型拟合效果进行对比。
2023-08-28 00:52:32
557
原创 python实现随机森林的特征变量重要性排序
随机森林的特征变量重要性排序在特征选择和特征分析中具有广泛的用途。它可以用来识别哪些特征对目标变量的预测最为重要,从而帮助我们理解数据中的关键特征和影响因素。
2023-07-23 12:18:10
4465
1
原创 Matlab中实现对一幅图上的局部区域进行放大
局部放大图可以展示图像中的细节信息,使图像更加直观和精美,此次使用magnify工具实现对绘制的figure选择区域绘制
2023-07-22 21:51:21
2451
原创 利用R分别绘制配对连线散点图、云雨图、山脊图
精美的科研绘图总会给人眼前一亮,今天学习利用R绘制多组配对连线散点图、云雨图、山脊图,这三幅图最近都曾出现在Nature Communications (IF 16.6)中
2023-07-14 01:02:29
3119
原创 回顾分类决策树相关知识并利用python实现
决策树(Decision Tree)是一种基本的分类与回归方法,呈树形结构,在分类问题中,表示预计特征对实例进行分类的过程。它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点(node)和有向边(directed edge)组成。
2023-07-01 20:19:20
3166
原创 python数据分析之连接MySQL数据库并进行数据可视化
本期将熟悉MySQL数据库以及管理和操作MySQL数据库的数据库管理工具Navicat Premium,然后在python中调用MySQL数据库进行数据分析和数据可视化。
2023-06-29 22:52:34
6819
原创 python实现基于SVD矩阵分解的电影推荐系统设计
本期利用抓取IMDB的英文网站上的电影相关数据,实现基于SVD矩阵分解的电影推荐系统设计。
2023-06-29 13:14:49
2967
原创 python数据分析之利用多种机器学习方法实现文本分类、情感预测
本期首先利用python抓取百度贴吧中的评论获得文本数据,再对文本数据进行中文分词、数据清洗、特征提取、TF-IDF权重计算等数据预处理,再进行一定的数据分析和数据可视化,最后运用朴素贝叶斯、神经网络、支持向量机、随机森林、逻辑回归、K近邻、决策树、梯度提升共计8种机器学习对文本数据进行分类。
2023-06-28 17:29:04
11544
12
原创 使用R绘制气泡图、带有显著性标记的热力图、渐变曲线图
本文分别介绍使用R语言中的ggplot包绘制气泡图、使用ComplexHeatmap包绘制带有显著性标记的热力图以及使用ggplot2包绘制渐变曲线图。
2023-06-27 20:34:32
5728
原创 利用R中的corrmorant包绘制精美的相关性热图
相关性热图 (correlation heatmap) 是一种可视化工具,用于展示数据集中各个变量之间的相关性。它以矩阵的形式显示变量之间的相关系数,并通过色彩编码来表示相关性的强度。在相关性热图中,每个变量都对应图中的一行和一列。图中的每个单元格代表两个变量之间的相关性,通常使用颜色来表示相关性的强度。通常,相关性的计算采用的是Pearson相关系数,它度量线性关系的强度和方向。热图中的颜色编码比较常见的方式是使用一个渐变的色谱图。一般来说,较高的正相关性对应着较深或较亮的颜色,如红色或黄色;而较高的负相
2023-06-26 15:03:37
5302
原创 深度学习之搭建LSTM模型预测股价
本期利用Google股价数据集,该数据集中GOOG_Stock_Price_Train.csv为训练集,GOOG_Stock_Price_Test.csv为测试集,里面有开盘价、最高股价、最低股价、收盘价、调整后的收盘价、成交量,2021年11月以前,可以在美国Yahoo网站下载股价历史数据,但现在对中国已经禁用了,可以去其他地方进行下载。本次使用调整后的收盘价进行预测。
2023-05-21 10:52:52
6645
2
原创 进一步了解傅里叶变换的应用(附案例代码)
傅里叶变换(Fourier Transform)是一种非常常见的数学工具,能够将一个函数(或时域信号)分解成一些基本频率的合成。它使我们可以将时域信号(例如波形图)转换成频域信号,因而更容易地看出信号中的频率成分。 傅里叶变换的基本思想是将一个连续信号分解成一些正弦波(即基本频率)的加权和,即任意周期信号都能表示成单频正弦函数或余弦函数的和的形式,这些正弦波的频率、振幅和相位可以表征原信号的特征。傅里叶变换可以在频域上对信号进行分析,以便检测特定频率的信号成分,因此常被用于信号处理、通信和图像处理等领域。
2023-05-14 21:44:13
6069
原创 如何让ChatGPT成为科研工作中的小助手?(附使用指南)
ChatGPT的功能多种多样,不仅可以撰写论文、演讲稿、文案码字、创作诗歌,还可以编写代码、答疑、简历编辑、罗列PPT大纲等等,强大的功能让许许多多的科研工作者们既欣喜万分也忐忑不安。今天,我们聊聊ChatGPT在科研中的一些实际用途,节约宝贵的科研时间,从而使科研工作者能更好更便利地全身心投入到科研创作中。
2023-04-29 17:28:04
6688
4
原创 机器学习之惩罚回归—基于python实现(附完整代码)
本期为大家介绍惩罚回归,分别从以下几个方面着手:为什么会有惩罚回归?什么是惩罚回归?常见的惩罚回归有哪些?惩罚回归的python代码如何实现?我相信解决好这些问题,就已经基本能够掌握惩罚回归的很多知识。
2023-04-22 22:35:13
2591
5
原创 机器学习之利用SMO算法求解支持向量机—基于python
本期将讨论支持向量机的实现问题,我们知道支持向量机的学习问题可以化为求解凸二次规划问题。这样的凸二次规划问题具有全局最优解,并且有许多最优化算法可以用于这一问题的求解。但是当训练样本容量很大时,这些算法往往变得非常低效,以致无法使用。所以,如何高效地实现支持向量机学习就成为一个重要的问题。目前人们已提出许多快速实现算法。本期讲述其中的序列最小最优化(sequential minimal optimization, SMO)算法。
2023-04-20 00:17:20
2097
原创 机器学习之主成分分析建模
本期介绍一种常见的非监督学习方法,即主成分分析。对于非监督学习,其数据中只含有特征变量x,而没有响应变量y。因此非监督学习的目标并非用x预测y,而是探索特征变量x本身的规律和模式。主成分分析是统计学中进行降维的经典方法,该降维的思想是将多个高度相关的特征变量转换为几个不存在线性关系的特征变量,转置后的变量称为主成分,每个主成分都是原始特征变量的线性组合,主成分可以反映原始数据的大部分信息,从而达到简化系统结构,抓住问题实质。一般特征变量个数太多或存在严重的多重共线性时,可以使用主成分分析对自变量进行处理,在
2023-04-09 20:47:00
2639
1
原创 机器学习之多分类问题的支持向量机—基于python
本期使用UCIMachine Learning Repository 的液体超声波流量计(liquid ultrasonic flowmeter)数据Meter_D.csv,进行多分类问题的SVM估计。其中V44为响应变量,表示流量计的四种不同状态(1为Healthy,2为Gas injection,3为Installation effects,4为Waxing)。V1-V43为流量计的一系列度量指标,均为数值型变量。研究目的是根据这些指标判断流量计的质量状况。
2023-04-02 00:57:14
3474
22
原创 机器学习之支持向量回归(SVR)预测房价—基于python
本期使用爬取到的有关房价数据集data.csv,使用支持向量回归(SVR)方法预测房价。该数据集中“y1”为响应变量,为房屋总价,而x1-x9为特征变量,依次表示房屋的卧室数量、客厅数量、面积、装修情况、有无电梯、、房屋所在楼层位置、有无地铁、关注度、看房次数共计9项。数据集data.csv可在文末获取。
2023-04-01 18:00:38
12244
22
原创 机器学习之判别分析建模—基于python
本期使用UCI Machine Learning Repository 的小麦种子数据 seeds_dataset.csv 进行判别分析。该数据集中,变量“Class”为响应变量,取值为1,2,3,表示三种不同类型的小麦种子,变量V1-V7 均为数值型特征变量,为根据X光技术得到的麦粒几何性质,比如面积、周长、宽度等。该数据需要提前下载并放置python工作路径,数据可去文末获取。
2023-04-01 00:12:41
1853
7
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅