带我去滑雪
码龄5年
关注
提问 私信
  • 博客:282,598
    动态:3,905
    286,503
    总访问量
  • 97
    原创
  • 18,244
    排名
  • 33,049
    粉丝
  • 417
    铁粉

个人简介:Statistical Learning 如有任何问题,欢迎私信!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
  • 加入CSDN时间: 2019-11-08
博客简介:

qq_45856698的博客

查看详细资料
  • 原力等级
    当前等级
    7
    当前总分
    3,107
    当月
    29
个人成就
  • Python领域新星创作者
  • 获得1,003次点赞
  • 内容获得215次评论
  • 获得3,911次收藏
  • 代码片获得5,439次分享
创作历程
  • 1篇
    2025年
  • 23篇
    2024年
  • 73篇
    2023年
成就勋章
TA的专栏
  • 机器学习之python
    36篇
  • 深度学习
    11篇
  • 数值算法
    10篇
  • R语言报错
    8篇
  • java
    1篇
  • 机器学习之R
    9篇
  • 模态分解
    2篇
  • 数据分析
    6篇
  • 图神经网络
    2篇
  • 计量
    3篇
兴趣领域 设置
  • 人工智能
    分类
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

多方法实现影像组学特征降维与选择

多方法实现影像组学特征降维与选择
原创
发布博客 2025.02.07 ·
379 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

基于三种机器学习方法的磁芯损耗预测模型

​汇总所有特征变量,并对磁芯材料类型、励磁波形数据等分类变量采用独立热编码将文本转化为数值。分别构建BP神经网络、随机森林回归、轻量梯度提升三种磁芯损耗预测模型,并对比各个模型在验证集上的MSE、MSE、MAE和,选择最优的模型对测试集进行预测。研究结果表明,轻量梯度提升模型的预测效果最好。此外为了探究模型的泛化能力,采用k-折交叉验证方法,对模型进行评估。最后,根据模型评估结果给出了相应建议。​
原创
发布博客 2024.12.28 ·
995 阅读 ·
9 点赞 ·
0 评论 ·
19 收藏

多种机器学习模型预测房价全流程建模

本期是房价预测,它是一个连续型的变量,因此它是一个回归问题。所以这是一篇回归问题的全流程的代码。从数据清洗到特征工程到分析可视化,再到模型选择,模型训练,交叉验证,超参数搜索,有效性评估。
原创
发布博客 2024.12.19 ·
850 阅读 ·
19 点赞 ·
0 评论 ·
20 收藏

股民情绪识别的LSTM-NBM混合模型

利用之前爬取2023年10月17日至2024年7月13日的65万余条东方财富网的上证指数股吧的股民评论数据,基于jieba库对股民情绪进行识别,在进行中文分词、去除停用词、合并同义词和长短句分离后,对长文本使用长短期记忆网络(LSTM)情绪分类,对短文本使用朴素贝叶斯(NBM)情绪分类,建立了股民情绪识别的LSTM-NBM混合模型。混合模型的正向文本和负向文本的识别准确率分别为77%、88%。
原创
发布博客 2024.11.09 ·
891 阅读 ·
15 点赞 ·
0 评论 ·
8 收藏

C语言中实现一个包含开卡、查询内容、存钱、取钱、转账和修改密码的银行服务系统

本次在C语言中实现一个包含开卡、查询内容、存钱、取钱、转账和修改密码的银行服务系统,下面开始代码实战。
原创
发布博客 2024.10.29 ·
736 阅读 ·
11 点赞 ·
0 评论 ·
14 收藏

Java语言基础实验报告

Java语言基础实验报告
原创
发布博客 2024.10.29 ·
954 阅读 ·
8 点赞 ·
0 评论 ·
16 收藏

基于泊松洞过程建模的异构蜂窝网络信干比增益与近似覆盖率分析

移动通信业务的高速增长使得传统同构蜂窝网络结构不能满足用户对通信质量的要求,而异构网络架构可以有效解决这种问题。文中对泊松洞过程下异构蜂窝网络的覆盖率进行研究。首先,利用泊松洞过程( Poisson Hole Process,PHP) 对异构蜂窝网络进行建模; 然后以信干比( Signal to Interference Radio,SIR) 分布为研究目标,利用泊松点过程的近似SIR 分析方法,推导出PHP 模型下网络SIR 增益的具体表达式; 最后,通过缩放泊松网络的信干比门限得到PHP 模型下的
原创
发布博客 2024.10.23 ·
423 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

基于信号分解和多种深度学习结合的上证指数预测模型

建立了基于上证指数的VMD-LSTM-BiGRU-Attention预测模型,该模型的拟合优度达到了0.98,而均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)也明显优于本文用于比较的其他模型,说明本文模型可为上证指数提供更加精准的预测。不仅如此,在相同VMD-LSTM-BiGRU-Attention模型的条件下,加入情绪指数与上证指数结合进行预测,比单独使用上证指数进行预测的准确率更高。这很好的体现了本文研究股民情绪指数和上证指数之间的关联性是有实际意义的,实现了基于股民情绪
原创
发布博客 2024.10.23 ·
1687 阅读 ·
19 点赞 ·
1 评论 ·
13 收藏

文本情绪指数与上证指数的VAR模型构建

文本情绪指数与上证指数的VAR模型构建
原创
发布博客 2024.06.28 ·
888 阅读 ·
8 点赞 ·
2 评论 ·
15 收藏

利用python爬取上证指数股吧评论并保存到mongodb数据库

主要解决爬取上证指数股吧评论问题,后续可能会对评论进行数据处理和情感分析。
原创
发布博客 2024.06.28 ·
979 阅读 ·
11 点赞 ·
1 评论 ·
13 收藏

自适应蚁群算法优化的攀爬机器人的路径规划

本项目旨在基于自适应蚁群算法优化,探索解决攀爬机器人路径规划问题的新方法。通过利用自适应蚁群算法的全局搜索能力和路径优化特性,来提高全局路径规划的效率和质量,为攀爬机器人的实际应用提供有效的路径规划解决方案。
原创
发布博客 2024.06.28 ·
988 阅读 ·
18 点赞 ·
0 评论 ·
10 收藏

Python+MongoDB的文档管理系统

文档管理系统(Python+MongoDB)为用户提供了高度的定制性和灵活性,使其成为一个非常有吸引力的选择。这种组合允许开发者创建一个完全根据他们的特定需求、工作流程和数据管理要求量身定制的解决方案。通过使用Python,开发者可以利用其简洁的语法和强大的库生态系统快速开发应用程序,而MongoDB的非关系型数据模型则提供了存储灵活性和高性能的读写操作,这对于处理大量的文档和元数据尤其重要,并且MongoDB是免费。
原创
发布博客 2024.04.11 ·
769 阅读 ·
6 点赞 ·
0 评论 ·
9 收藏

python绘制子图(旭日图、渐变堆积面积图、多数据折线图、比例关系图)

子图可以更清晰地展示和理解复杂的数据关系,通过将数据分成多个小图,有助于观察数据间的关系和趋势。减少数据之间的重叠和混淆,使得每个子图更易于理解和解释。不同类型的子图可以呈现数据的不同方面。例如,旭日图可以展示层次数据的结构,渐变堆积面积图可以显示时间序列数据的变化,多数据折线图可以比较多个数据集的趋势,比例关系图可以展示数据之间的相对比例关系。下面开始代码实战。
原创
发布博客 2024.04.06 ·
756 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

Python实现特征模态分解(FMD)

特征模态分解(Feature Mode Decomposition,FMD)是一种信号处理技术,用于从数据中提取特征,并将其表示为一组特定的模态成分。与其他分解方法类似,如小波变换或奇异值分解,FMD 旨在将信号分解为具有不同频率和振幅的模态成分,每个模态成分代表信号中的一个特定特征或组件。FMD 可以应用于多个领域,包括信号处理、图像处理、振动分析和数据压缩等。它通常用于处理非线性和非平稳信号,并且在提取信号中的重要特征方面具有一定的优势。 FMD 的目标是将原始信号分解为一组具有良好时频局部性质的基本模
原创
发布博客 2024.04.06 ·
4428 阅读 ·
21 点赞 ·
16 评论 ·
76 收藏

Matlab实现序贯变分模态分解(SVMD)

逐次变分模态分解是一种有效的信号处理和数据分析方法。它可以将复杂信号分解为多个模态函数,并可以通过数据重构将它们重新组合成原始信号。 SVMD有着广泛的应用范围,对于理解和描述信号的频率特性非常有帮助。
原创
发布博客 2024.03.25 ·
1792 阅读 ·
11 点赞 ·
5 评论 ·
38 收藏

基于word2vec+LSTM模型实现百度贴吧恶意评论预测

基于word2vec+LSTM模型实现百度贴吧恶意评论预测
原创
发布博客 2024.03.25 ·
1255 阅读 ·
14 点赞 ·
0 评论 ·
34 收藏

使用逻辑回归绘制混淆矩阵、ROC曲线、特征变量重要性排序图

逻辑回归是一种用于解决分类问题的统计学习方法,它常被用于二分类问题,即将数据分为两个类别。逻辑回归的目标是根据输入的特征来预测输出为某个类别的概率。逻辑回归模型在简单性、可解释性、稳定性和性能评估等方面具有优势,并且可以通过绘制混淆矩阵、ROC曲线和特征变量重要性排序图来进一步评估和优化模型。下面开始代码实战。
原创
发布博客 2024.03.18 ·
1069 阅读 ·
15 点赞 ·
0 评论 ·
15 收藏

使用决策树模型绘制混淆矩阵、ROC曲线、特征变量重要性排序图

决策树模型可以处理各种类型的特征(连续型、离散型、类别型等),不需要对特征进行过多的预处理工作,因此非常适合初步探索数据。通过绘制混淆矩阵、ROC曲线和特征变量重要性排序图,可以直观地了解模型的性能表现以及对于预测的重要特征,有助于进一步分析和改进模型。下面开始代码实战。
原创
发布博客 2024.03.18 ·
2134 阅读 ·
23 点赞 ·
2 评论 ·
40 收藏

基于粒子群优化的支持向量机房价预测分析

在本期中,首先介绍如何爬取房价数据与清洗数据,对处理后的数据进行简单分析,最后使用粒子群优化的支持向量机对房价进行预测。
原创
发布博客 2024.03.14 ·
1289 阅读 ·
27 点赞 ·
0 评论 ·
20 收藏

R实现热图与网络图组合并显示显著性

热图和网络图分别展示了数据的不同方面。热图可用于显示变量之间的相关性或模式,而网络图则可用于显示节点之间的连接关系。通过将它们组合在一起,可以更全面地展示数据之间的关系和结构。下面开始代码实战。
原创
发布博客 2024.03.07 ·
1539 阅读 ·
27 点赞 ·
0 评论 ·
20 收藏
加载更多