AI(人工智能)And Image Enhance(图像增强)知识点总结 Sigmoid函数,全称为sigmoid激活函数,是一种常用的非线性函数,其数学表达式为:[ f(x) = \frac{1}{1 + e^{-x}} ]这个函数将输入的实数值映射到(0, 1)区间内,当输入值趋近于正无穷大时,Sigmoid函数的输出接近1;当输入值趋近于负无穷大时,其输出接近0。在中间区域,函数呈现出平滑的S型曲线,因此得名“Sigmoid”。在神经网络中,Sigmoid函数起到了以下几个关键作用:非线性转换:神经网络的核心能力在于通过多层非线性变换来学习复杂的输入输出关系。Sigmoid
论文创新点总结 今天读的这篇文章中提到了一种以前没有接触的模型,这个模型使用了双分支的网络来处理图像增强的问题(将图像增强问题分解为亮度调整和色度恢复两个子问题),其中一个分支为亮度调整网络(LAN),另一个分支为色度恢复网络(CRN)。具体而言,全局和局部聚合块(GLAB)被开发为LAN的构建块,它由一个变换分支和一个双重注意力卷积块(DACB)组成,以学习非局部表示和局部信息。最后,提出了一个融合网络,将LAN和CRN学习到的表示结合起来,生成正常光照图像。
read paper and make summer (Image enhancement) 颜色直方图是一个图表,横轴表示颜色值(例如RGB颜色空间中的红、绿、蓝分量),纵轴表示对应颜色值出现的频率。
《思考总结》 下采样和上采样及其实现的方式下采样(Downsampling)上采样(Upsampling)具体应用中的选择总结标题上采样和下采样是图像处理中重要的操作,通过选择合适的方法,可以有效地提取和恢复图像特征。在深度学习模型中,根据具体需求选择合适的上采样和下采样方法,可以显著提升模型性能和效率。
Image Enhance (图像增强:论文) 摘要本文提出了一种基于传统直方图均衡(HE)算法的智能对比度增强技术。这种动态直方图均衡化(DHE)技术控制了传统直方图均衡化的效果,从而在增强图像效果的同时不会丢失任何细节。DHE 根据局部最小值对图像直方图进行分区,并为每个分区分配特定的灰度级范围,然后再分别对它们进行均衡。这些分区还要经过重新分区测试,以确保不存在任何占主导地位的部分。这种方法能很好地增强对比度,而不会带来严重的副作用,如冲淡外观、棋盘格效果等,也不会产生不良的人工痕迹,因此优于其他现有方法。
static 适用场景:当外部类需要使用内部类,而内部类无需外部类资源,并且内部类可以单独创建时,考虑采用静态内部类的设计,在知道如何初始化静态内部类。java中一个类要被声明为static的,只有一种情况,就是静态内部类(内嵌类)。1.如果类的构造器或静态工厂中有多个参数,设计这样类时,最好使用Builder模式,特别是当大多数参数都是可选的时候。静态变量可以被类的所有实例共享,因此静态变量可以作为实例之间的共享数据,增加实例之间的交互性。同静态代码块与静态,不能直接访问类的实例变量和实例方法,需通过类的对象访问。
数据库 json 数据类型的 整合 文章目录人生格言json 数据格式实体类的准备整合代码的准备整合结果人生格言未来犹存,人生当前json 数据格式 [ { id: 1, label: "Level one 1", children: [ { id: 4, label: "Level two 1-1", children: [
EasyExcel 文章目录人生格言读写操作公共接触EasyExcel 写操作实体类的准备写操作主要代码EasyExcel读操作实体类的准备监听器的准备测试类的准备操作结果人生格言未来犹存,人生当前读写操作公共接触<poi.version>3.17</poi.version><dependency> <groupId>org.apache.poi</groupId> <artifactId>poi</artifactId
Nginx 的基本用处 文章目录人生格言请求转发负载均衡动静分离windows 版的Nginx的特点配置Nginx 实现请求转发功能人生格言未来犹存,人生当前请求转发通过路径中包含的内容我们做请求转发操作,转到不同的微服务器负载均衡同一个微服务我们设置两台乃至多态服务器,我们可以动轮询的算法访问多台服务器上的微服务,不至于所有的请求都去请求同一个服务器,造成服务器的压力过大动静分离将静态资源放在一个服务器上,将java代码放在一个服务器上,请求不停类型的资源时,转到不同的服务器windows 版的Nginx的