0、多线程详解

多线程

1、程序进程线程

1. 程序(Program)

  • 定义:程序是指你编写的代码,是静态的。你可以把它看作一组有序的指令,用来完成某个特定任务。例如,你写的加法代码(加法程序),本身就是程序。

    示例:你写的代码加法程序,可以是一个简单的脚本,例如:

    def add(a, b):
        return a + b

    这段代码就是一个程序,但它本身并没有执行,直到你运行它。

2. 进程(Process)

  • 定义:进程是程序在计算机中运行时的实例。当你执行一个程序时,操作系统会创建一个进程来运行该程序。每个进程都有自己的内存空间、资源等,操作系统用它来管理程序的执行。

    示例:当你双击运行你写的加法程序时,操作系统会启动该程序,并分配一个进程来执行这个程序。这个进程就会负责执行你的加法代码,直到程序完成并退出。

    • 进程是程序运行时的状态,是操作系统给程序分配的资源和环境的集合。

    所以,程序是代码,而进程是程序运行时的实体。

3. 线程(Thread)

  • 定义:线程是进程内部的一个执行单元。每个进程至少有一个线程,称为主线程。一个进程可以有多个线程,它们共享进程的内存和资源,可以并行或并发执行不同的任务。

    重要澄清

    • 线程并不是“进程的任务”。线程是进程中的执行路径,它代表了程序执行的一个执行单元。

    • 在一个进程中,通常会有多个线程并行执行不同的任务。例如,在你启动的加法程序进程中,可能有一个主线程负责接收用户输入,另一个线程可能负责执行计算任务,第三个线程可能负责更新显示界面等。

    示例:假设你在加法程序中同时执行加法和减法操作,实际上加法和减法操作可以通过不同的线程来处理。你可以在同一个程序(进程)中创建两个线程,一个专门计算加法,另一个专门计算减法。

小结:

  • 程序:是你写的代码,例如加法代码。它是静态的,在没有执行时只是代码。

  • 进程:是程序在运行时的实例,操作系统为程序分配资源,启动进程来执行程序。

  • 线程:是进程内部的一个执行单元,进程至少有一个线程,多个线程可以并发执行任务。

2、高并发

高并发指的是在单位时间内,系统能够同时处理大量并发请求的能力。简单来说,就是指在系统中同时进行多个操作(例如请求、任务、数据处理等)时,系统能够高效地应对并发负载,确保稳定、快速地响应每个操作。

1. 高并发的核心特点

  • 高并发不等于多线程:高并发通常指的是在同一时间内有大量的操作需要被处理。它可能涉及多线程,但也可能是分布式系统,缓存机制,负载均衡等多个技术的结合。

  • 快速响应:系统能够高效地处理大量请求,并且尽可能减少延迟。

  • 资源共享:高并发系统通常需要多用户共享计算资源,这要求系统能够合理地分配资源,避免瓶颈。

2. 高并发的场景举例

(1)电商平台的秒杀活动

在大促活动(如“双十一”、“618”促销)期间,电商平台可能会面临百万甚至千万级别的用户同时访问和下单请求。如果没有高并发处理能力,系统可能会崩溃,导致用户无法正常下单或支付。

  • 高并发问题:短时间内大量用户同时访问相同的商品页面或提交支付请求,服务器的负载会非常大,可能会出现延时、超时,甚至崩溃。

  • 高并发解决方案:采用缓存技术(如Redis)来缓存商品信息,避免重复查询数据库;使用负载均衡来分散流量;采用队列技术来控制请求的处理速率,保证系统不会在瞬间被压垮。

(2)社交媒体平台的点赞、评论

例如,在社交平台上,某个热门帖子可能会在短时间内收到成千上万的点赞和评论。如果系统无法快速处理这些请求,可能导致数据的延迟显示或系统崩溃。

  • 高并发问题:每个用户的点赞、评论操作会在同一时刻产生大量请求,服务器需要快速处理这些请求。

  • 高并发解决方案:采用异步处理消息队列来将点赞和评论请求推送到队列中,后台异步处理。这样用户可以在提交请求后得到快速反馈,实际操作在后台进行,避免了系统被瞬时大量请求压垮。

(3)实时数据分析

例如,某些大数据分析平台需要对大量传感器数据进行实时分析和处理。比如,金融领域的股票交易系统需要在毫秒级别内分析大量市场数据,以便做出交易决策。

  • 高并发问题:每秒钟可能会有成千上万的数据请求需要被处理,同时也要对这些数据进行实时计算。

  • 高并发解决方案:使用流处理框架(如Apache Kafka、Apache Flink、Storm等)来处理数据流,分布式计算集群来保证处理能力,内存计算(如Redis、Memcached)来提升响应速度。

(4)游戏服务器

在线多人游戏常常面临极高的并发情况,尤其是在游戏更新或大规模活动期间。成千上万的玩家同时在线,发起请求与交互。

  • 高并发问题:玩家的每个动作(如移动、攻击、聊天、购买道具等)都需要实时响应。如果没有良好的并发处理机制,可能导致游戏掉线或延迟。

  • 高并发解决方案:游戏服务器常采用分布式架构,每个玩家或每个游戏区域使用不同的服务器实例来分担压力;此外,常用负载均衡缓存策略来保证请求的高效分发和响应。

(5)在线支付系统

比如支付平台的用户在支付过程中,支付请求、退款请求、账户查询等操作往往会产生高并发的请求。支付平台需要保证每个请求的准确性和实时性。

  • 高并发问题:支付平台会面临大量的并发请求,特别是在促销活动、节假日或支付高峰期,必须保证每笔交易都被正确处理,避免延迟或交易错误。

  • 高并发解决方案:支付系统通常会使用分布式数据库来分担请求,采用事务队列来保证每笔交易的顺序和一致性;利用异步处理来提高响应速度,并确保系统在高并发下依然稳定运行。


3. 高并发常见的技术手段

(1)负载均衡

负载均衡:就是同一个服务部署到不同服务器,然后通过nginx转发到这些服务器,这样避免了一个服务只有一个服务器,处理大数据时故障的事情发生。

负载均衡是将流量均匀分配到多个服务器上,从而提升系统的整体处理能力和可用性。常见的负载均衡方式包括:

  • 硬件负载均衡器:专门的硬件设备,能够进行高效的流量分发。

  • 软件负载均衡器:如 Nginx、HAProxy 等,基于算法(如轮询、最小连接数、IP 哈希等)将请求分发到不同的服务器。

  • DNS 负载均衡:通过 DNS 将请求分配到不同的 IP 地址上。

负载均衡不仅可以提升性能,还能实现高可用性,防止单点故障。

好处:可以有效地分散流量,确保系统的高可用性和高并发处理能力。

(2)缓存

将有的数据通过Redis等中间件进行缓存,避免同一时间内容对数据库进行反复多次操作,数据库崩的事情发生

缓存技术是通过将热点数据存储在内存中,避免频繁访问数据库或其他后端资源,从而提升系统的响应速度和并发处理能力。

  • 本地缓存:如使用内存数据库 Redis 或 Memcached,将经常访问的数据缓存到内存中&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱吃山竹的大肚肚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值