A Time-Varying Adaptive Inertia Weight basedModified PSO Algorithm for UAV Path Planning
摘要
路径规划是自主无人驾驶Ariel车辆(UAV)执行的一个组成部分。寻找最优路径是一个NP-hard问题,元启发式算法在寻找最优路径方面一直显示出很好的效果。粒子群优化(PSO)是路径规划中常用的元启发式优化算法之一。然而,PSO受到了一些限制,如局部最小值的下降。粒子多样性在产生更好的路径规划结果方面起着重要作用,同时避免了局部最小值。此外,还增加了惯性权重等参数以增加粒子的多样性。在本文中,我们对为PSO提出的各种惯性权重进行了分析,以提高粒子的多样性。然后,我们为我们之前提出的用于无人机路径规划的PSO版本提出了一个时变的自适应惯性权重参数,称为nPSO,并与其他惯性权重参数策略进行了比较。
简介
近年来,自主无人机路径规划因其在军事和民用领域的广泛应用而引起了人们的广泛关注。路径规划是自主无人机的一个组成部分。在无人机移动之前规划的路径称为离线路径规划[1]。在本文中,我们将研究局限于自主无人机的离线路径规划。PSO算法简单、参数少、易于实现,是一种广泛应用于路径规划的元启发式算法。在我们之前的工作[2]中,提出了一种改进的PSO,称为nPSO,用于无人机路径规划。结果表明,粒子群算法的粒子多样性在无人机最优路径生成中起着重要作用。为了提高颗粒的多样性,[3]中首次引入的惯性权重发挥了重要作用。它最初被提出为一个常数值,而后来提出的动态值是为了在两个重要的PSO特性(即勘探和开发)之间取得平衡。到目前为止,已经提出了几种不同的方法,如常数值[3]、时变[4][5][6]、单变量[6]、多变量[7]等,来定义惯性