Matlab常用代码(画图、输出字符、保存变量、图片等)

目录

前言

1、画图

1.1、一维图

1.1.1、一维图的标记符号、线型

1.1.2、一维图的颜色

1.2、二维图

1.2.1、二维图的颜色,添加colorbar

1.3、一个图中显示多张子图、一个图中包含多条曲线

1.4、添加图例、标题、坐标轴、网格(子网格)

1.5、设置坐标轴范围、图形形状(方形)、不显示坐标轴

2、输出字符

2.1、图片名称随变量值改变而改变

3、保存、加载变量(mat文件)

4、保存、导入图片(png、bmp格式) 

4.1、将多张图片保存到一个文件夹中


前言

matlab画图的一些基本指令,包括画图、输出字符、保存变量等操作


1、画图

1.1、一维图

1.1.1、一维图的标记符号、线型

标记符号:(标记符号的大小可用  'marksize' 指令)

 

线型:线宽:用命令 'linewidth' 来指令:)

 示例代码: 

x = linspace(0,pi,10); %0-pi等间距插10个值
y1 = cos(x);

figure
% 线型:实线; 符号:o; 符号大小:10;  线宽:4
plot(x,y1,'-o','markersize',10,'linewidth',4) 

1.1.2、一维图的颜色

颜色的一种表示方式使用单个字母表示:

红色绿色蓝色黑色白色黄色粉色青色
rgbkwymc

另外一种表示方式,即用 r,g,b 数值表示(matlab默认最大值为1,可在0-1之间选择)

红色绿色蓝色黑色白色黄色灰色品红
[1 0 0][0 1 0][0 0 1][0 0 0][1 1 1][1 1 0][0.5 0.5 0.5][1 0 1]

也可以用16进制表示

 示例代码:

x=[1,2,3,4,5,6];
y=[1,4,9,16,25,36];

figure
plot(x,y,'color','b') %蓝色
figure
plot(x,y,'color',[0.5 0.5 0.5]) %灰色
figure
plot(x,y,'color','#D95319') %橘黄色

1.2、二维图

1.2.1、二维图的颜色,添加colorbar

 示例代码:

I=rand(10); %产生一个随机矩阵,维度10*10
% hot
figure;imagesc(I);colormap(hot)
% summer 并添加colorbar
figure;imagesc(I);colormap(summer);colorbar

1.3、一个图中显示多张子图、一个图中包含多条曲线

  示例代码: 

x = linspace(0,pi,20);
y1 = cos(x);
y2 = sin(x);
%-----------------------------------------------%
% 一张图上画多张子图
figure
%子图1
subplot(1,2,1); plot(x,y2)
%子图2
subplot(1,2,2);plot(x,y1)
%-----------------------------------------------%
% 一张图上画多条曲线
figure
plot(x,y1)
hold on
plot(x,y2)

1.4、添加图例、标题、坐标轴、网格(子网格)

 示例代码: 

x = linspace(0,pi,20);
y1 = cos(x);
y2 = sin(x);

figure
plot(x,y1)
hold on  %将两个图形画在一个图片里
plot(x,y2)
%标题  字号16, 字体Arial,加粗,红色 
title('cos&sin', 'FontSize', 16, 'FontName', 'Arial', 'Color', 'red'); 
%横坐标 字号14, 字体Arial,加粗,蓝色 
xlabel('x label', 'FontSize', 14, 'FontName', 'Arial', 'FontWeight', 'bold', 'Color', 'blue')  
%纵坐标 字号14, 字体italic,加粗,绿色 
ylabel('y label', 'FontSize', 14, 'FontName', 'Arial', 'FontAngle', 'italic', 'Color', 'green') 
legend('cos(x)','sin(x)') %图例
lgd = legend;
lgd.FontSize = 14; %设置图例字体大小
grid on %添加网格
grid minor %子网格 

1.5、设置坐标轴范围、图形形状(方形)、不显示坐标轴

 示例代码: 

x = linspace(0,pi,20);
y1 = cos(x);
y2 = sin(x);

figure
plot(x,y1)
xlim([0 pi/2])  % x轴显示范围
ylim([-0.4 1.4])  % y轴显示范围
axis square  %图形为方形


figure
plot(x,y2)
axis square  %图形为方形
axis off  %不显示坐标轴

2、输出字符

 输出字符串、变量的数值等

 示例代码:

a=345;
b=789;
disp('====================================')
disp('你好!')
disp(['a的值为: ' num2str(a),' // ', 'b的值为:' num2str(b)]);
%  %.2f保留两位小数   /n 换行
fprintf('a = %.2f \n',a);   
%  %d 整数
fprintf('a = %d \n',a);  

2.1、图片名称随变量值改变而改变

 有时候会输出几张图片,每张图片的名称是不一样的,可以用下述代码给不同图片加不同的序号。

  示例代码: 

% 在一张图片中显示4张子图,每张子图的题目不同
figure
for i=1:4
    img=rand(10);    % 产生随机矩阵
    subplot(2,2,i)
    imagesc(img)
    title(sprintf('rand matrix%d',i))
end

3、保存、加载变量(mat文件)

 示例代码:

x=1;
y=12;
z=13;

%保存变量
save filename x y   %将变量 x,y 存到 filename.mat 的文件中
save filename      %将所有变量存到 filename.mat 的文件中
%加载变量
load filename.mat
load('filename.mat')

4、保存、导入图片(png、bmp格式) 

  示例代码:

a=rand(10);


imwrite(a,'a.bmp'); %将变量a保存为bmp文件
imwrite(a,'a.png'); %将变量a保存为png文件(将a归一化到[0,1]之间后再写出,读入后1默认为255)

%导入a.bmp  a.png文件
I=imread('a.bmp') %数值量化到0-255区间
I2=imread('a.png') %数值量化到0-255区间

4.1、将多张图片保存到一个文件夹中

  示例代码: 

% 创建保存图片的文件夹
outputFolder = 'figure';
if ~exist(outputFolder, 'dir')
    mkdir(outputFolder);
end

% 输出100张随机矩阵图片(png格式),命名为rand_matrix1.png, rand_matrix2.png,......
for i=1:100
    % 产生随机矩阵
    img=rand(10);
    % 创建文件名
    filename = fullfile(outputFolder, sprintf('rand_matrix%d.png', i));
    % 保存图像为PNG格式
    imwrite(img, filename, 'png');
end
disp('输出图片完成')

第1章 BP神经网络的数据分类——语音特征信号分类 第2章 BP神经网络的非线性系统建模——非线性函数拟合 第3章 遗传算法优化BP神经网络——非线性函数拟合 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模 第6章 PID神经元网络解耦控制算法——多变量系统控制 第7章 RBF网络的回归--非线性函数回归的实现 第8章 GRNN网络的预测----基于广义回归神经网络的货运量预测 第9章 离散Hopfield神经网络的联想记忆——数字识别 第10章 离散Hopfield神经网络的分类——高校科研能力评价 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算 第12章 初始SVM分类与回归 第13章 LIBSVM参数实例详解 第14章 基于SVM的数据分类预测——意大利葡萄酒种类识别 第15章 SVM的参数优化——如何更好的提升分类器的性能 第16章 基于SVM的回归预测分析——上证指数开盘指数预测. 第17章 基于SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测 第18章 基于SVM的图像分割-真彩色图像分割 第19章 基于SVM的手写字体识别 第20章 LIBSVM-FarutoUltimate工具箱及GUI版本介绍与使用 第21章 自组织竞争网络在模式分类中的应用—患者癌症发病预测 第22章 SOM神经网络的数据分类--柴油机故障诊断 第23章 Elman神经网络的数据预测----电力负荷预测模型研究 第24章 概率神经网络的分类预测--基于PNN的变压器故障诊断 第25章 基于MIV的神经网络变量筛选----基于BP神经网络的变量筛选 第26章 LVQ神经网络的分类——乳腺肿瘤诊断 第27章 LVQ神经网络的预测——人脸朝向识别 第28章 决策树分类器的应用研究——乳腺癌诊断 第29章 极限学习机在回归拟合及分类问题中的应用研究——对比实验 第30章 基于随机森林思想的组合分类器设计——乳腺癌诊断 第31章 思维进化算法优化BP神经网络——非线性函数拟合 第32章 小波神经网络的时间序列预测——短时交通流量预测 第33章 模糊神经网络的预测算法——嘉陵江水质评价 第34章 广义神经网络的聚类算法——网络入侵聚类 第35章 粒子群优化算法的寻优算法——非线性函数极值寻优 第36章 遗传算法优化计算——建模自变量降维 第37章 基于灰色神经网络的预测算法研究——订单需求预测 第38章 基于Kohonen网络的聚类算法——网络入侵聚类 第39章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类 第40章 动态神经网络时间序列预测研究——基于MATLAB的NARX实现 第41章 定制神经网络的实现——神经网络的个性化建模与仿真 第42章 并行运算与神经网络——基于CPU/GPU的并行神经网络运算 第43章 神经网络高效编程技巧——基于MATLAB R2012b新版本特性的探讨 第44章 层次分析法 第45章 灰色关联度 第46章 熵权法 第47章 主成分分析 第48章 主成分回归 第49章 偏最小二乘 第50章 逐步回归分析 第51章 模拟退火 第52章 RBF,GRNN,PNN-神经网络 第53章 竞争神经网络与SOM神经网络 第54章 蚁群算法tsp求解 第55章 灰色预测GM1-1 第56章 模糊综合评价 第57章 曲线拟合 目前没空,后面继续整理,还有很多类似的代码,欢迎下载
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值