大模型实战营Day2 轻松玩转书生·浦语大模型趣味Demo:作业

基础作业(写在最前)

作业1

使用 InternLM-Chat-7B 模型生成 300 字的小故事(需截图)。
在这里插入图片描述

作业2

熟悉 hugging face 下载功能,使用 huggingface_hub python 包,下载 InternLM-20B 的 config.json 文件到本地(需截图下载过程)。
step1: 使用 Hugging Face 官方提供的 huggingface-cli 命令行工具。安装依赖:

pip install -U huggingface_hub

在这里插入图片描述
step2: 新建 python 文件,填入以下代码,运行即可。

import os 
from huggingface_hub import hf_hub_download  # Load model directly 
hf_hub_download(repo_id="internlm/internlm-7b", filename="config.json")

在这里插入图片描述
在这里插入图片描述

进阶作业

完成浦语·灵笔的图文理解及创作部署

见详细作业。

完成 Lagent 工具调用 Demo 创作部署

见详细作业。

InternLM-Chat-7B智能对话Demo

1. 环境准备

在 InternStudio 平台中选择 A100(1/4) 的配置
在这里插入图片描述
打开刚刚租用服务器的进入开发机,并且打开其中的终端开始环境配置、模型下载和运行 demo。
在这里插入图片描述
进入开发机后,在页面的左上角可以切换 JupyterLab、终端和 VScode,并在终端输入 bash 命令,进入 conda 环境
在这里插入图片描述
进入 conda 环境之后,使用以下命令从本地克隆一个已有的 pytorch 2.0.1 的环境

bash # 请每次使用 jupyter lab 打开终端时务必先执行 bash 命令进入 bash 中
bash /root/share/install_conda_env_internlm_base.sh internlm-demo  # 执行该脚本文件来安装项目实验环境

在这里插入图片描述
然后使用以下命令激活环境

conda activate internlm-demo

在这里插入图片描述
并在环境中安装运行 demo 所需要的依赖。

# 升级pip
python -m pip install --upgrade pip
pip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

2. 模型下载

InternStudio 平台的 share 目录下已经为我们准备了全系列的 InternLM 模型,使用如下命令复制:

mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory

在这里插入图片描述

3. 代码准备

首先 clone 代码,在 /root 路径下新建 code 目录,然后切换路径, clone代码。

cd /root/code
git clone https://gitee.com/internlm/InternLM.git

在这里插入图片描述
切换 commit 版本,与教程 commit 版本保持一致,可以让大家更好的复现。

cd InternLM
git checkout 3028f07cb79e5b1d7342f4ad8d11efad3fd13d17

在这里插入图片描述
/root/code/InternLM/web_demo.py 中 29 行和 33 行的模型更换为本地的 /root/model/Shanghai_AI_Laboratory/internlm-chat-7b

在这里插入图片描述

4. 终端运行

/root/code/InternLM 目录下新建一个 cli_demo.py 文件
在这里插入图片描述
在终端运行以下命令,即可体验 InternLM-Chat-7B 模型的对话能力。对话效果如下所示:

python /root/code/InternLM/cli_demo.py
在这里插入图片描述

5. web demo

切换到 VScode 中,运行 /root/code/InternLM 目录下的 web_demo.py 文件,输入以下命令后,将端口映射到本地。在本地浏览器输入 http://127.0.0.1:6006 即可。

bash
conda activate internlm-demo  # 首次进入 vscode 会默认是 base 环境,所以首先切换环境
cd /root/code/InternLM
streamlit run web_demo.py --server.address 127.0.0.1 --server.port 6006

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Lagent智能体工具调用Demo

1.环境准备

InternLM-Chat-7B

2.模型下载

InternLM-Chat-7B

3.Lagent 安装

首先切换路径到 /root/code 克隆 lagent 仓库,并通过 pip install -e . 源码安装 Lagent

cd /root/code
git clone https://gitee.com/internlm/lagent.git
cd /root/code/lagent
git checkout 511b03889010c4811b1701abb153e02b8e94fb5e # 尽量保证和教程commit版本一致
pip install -e . # 源码安装

在这里插入图片描述

4.修改代码

/root/code/lagent/examples/react_web_demo.py内容替换
在这里插入图片描述

5.Demo 运行

streamlit run /root/code/lagent/examples/react_web_demo.py --server.address 127.0.0.1 --server.port 6006

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

浦语·灵笔图文创作理解 Demo

1. 环境准备

在这里插入图片描述

2. 模型下载

3. 代码准备

在这里插入图片描述

4. Demo运行

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
哈哈,效果还不错。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值