CNN - 卷积

本文详细介绍了卷积神经网络(CNN)的基本概念,如卷积、卷积核、多通道和特征图。特别讨论了卷积核的几种类型,包括高斯模糊、Sobel算子、Emboss、Ontline和Shapen,并通过编程实现了这些卷积核的操作,展示了不同参数调整对图像处理的影响,特别是边缘检测的应用。
摘要由CSDN通过智能技术生成

01 基本概念

卷积:简单来讲,就是把一个 n*m 的二维矩阵通过一个卷积核将其变为n1*m1的二维矩阵的过程称为卷积。
卷积核:可以看作对某个局部的加权求和;它是对应局部感知,它的原理是在观察某个物体时我们既不能观察每个像素也不能一次观察整体,而是先从局部开始认识,这就对应了卷积。卷积核的大小一般有1x1,3x3和5x5的尺寸(一般是奇数x奇数)。
多通道:即输入矩阵的维度。
特征图:卷积操作处理后的结果。

s是strides(滑动步长)
输入特征图宽高为 i (一般预处理成正方形)
卷积核大小为 k(一般高宽相同)
p是padding大小
卷积结果大小:( i - k + 2 * p ) / s + 1

特征选择:人工选取特征,然后计算机利用这些特征进行分类,在选择正确特征情况下,信噪比(signal-to-noise ration)将会提高,分类正确率也会提高。
Eg:多通道多卷积核的CNN(3通道2卷积核)
在这里插入图片描述

02 卷积核

2.1 高斯模糊

通常用它来减少图像噪声以及降低细节层次。常用在图像预处理阶段,以增强图像在不同比例下的表达效果。所谓模糊就是每个像素都去周围像素的平均值。
关于卷积核的权值分配,高斯分布是一种很好的分配方式。它使得距离中心点越近的像素点的权值会越高。
f ( x , y ) = 1 σ 2 π e − ( x 2 + y 2 ) 2 σ 2 f(x, y) = {1 \over {\sigma}\sqrt {2\pi}}e^{ {-(x^2+y^2)}\over{2\sigma^2}} f(x,y)=σ2π

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值