一、树型结构
1.概念:
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
- 有一个特殊的节点,称为根节点,根节点没有前驱节点
- 除根节点外,其余节点被分成M(M > 0)个互不相交的集合T1、T2、…、Tm,其中每一个集合 Ti (1 <= i<= m) 又是一棵与树类似的子树。
- 每棵子树的根节点有且只有一个前驱,可以有0个或多个后继
- 树是递归定义的。
2.相关概念
节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
叶子节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
根结点:一棵树中,没有双亲结点的结点;如上图:A
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
3.树的表示形式
树有很多种表示方式,如:双亲表示法,孩子表示法、孩子兄弟表示法等等。
4.树的应用
二、二叉树
1.概念
一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
二叉树的特点:
- 每个结点最多有两棵子树,即二叉树不存在度大于 2 的结点。
- 二叉树的子树有左右之分,其子树的次序不能颠倒,因此二叉树是有序树。
2.二叉数的基本形态
- 空树
- 只有根节点的二叉树、
- 节点只有左子树、
- 节点只有右子树、
- 节点的左右子树均存在
3.两种特殊的二叉树
-
满二叉树: 一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2^K - 1 ,则它就是满二叉树
-
完全二叉树:叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树
4.二叉树的性质
- 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) (i>0)个结点
- 若规定只有根节点的二叉树的深度为1,则深度为K的二叉树的最大结点数是2^k - 1 (k>=0)
- 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
- 具有n个结点的完全二叉树的深度k为
向上取整 - 按顺序对所有节点从0开始编号,则对于序号为i的结点有:
(1) 双亲序号:(i-1)/2 (i>0时)
(2)若2i+1<n,左孩子序号:2i+1,否则无左孩子
(3)若2i+2<n,右孩子序号:2i+2,否则无右孩子
5.二叉树的存储
分为:
- 顺序存储
- 类似于链表的链式存储(通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:)
- 孩子表示法:数据域,左孩子的引用,右孩子的引用
- 孩子双亲表示法:数据域,左孩子的引用,右孩子的引用,当前节点的根节点
6.二叉树的基本操作
6.1 二叉树的遍历
- NLR:前序遍历
- LNR:中序遍历
- LRN:后序遍历
- 层序遍历
6.2二叉树的基本操作的代码实现
class BTNode {
public char val;
public BTNode left;//左子树的引用
public BTNode right;//右子树的引用
public BTNode(char val) {
this.val = val;
}
}
public class BinaryTree {
public BTNode createTree() {
BTNode A = new BTNode('A');
BTNode B = new BTNode('B');
BTNode C = new BTNode('C');
BTNode D = new BTNode('D');
BTNode E = new BTNode('E');
BTNode F = new BTNode('F');
BTNode G = new BTNode('G');
BTNode H = new BTNode('H');
A.left = B;
A.right = C;
B.left = D;
B.right = E;
E.right = H;
C.left = F;
C.right = G;
return A;
}
// 前序遍历
void preOrderTraversal(BTNode root) {
if(root == null) return;
System.out.print(root.val);
preOrderTraversal(root.left);
preOrderTraversal(root.right);
}
// 中序遍历
void inOrderTraversal(BTNode root) {
if(root == null) return;
inOrderTraversal(root.left);
System.out.print(root.val);
inOrderTraversal(root.right);
}
// 后序遍历
void postOrderTraversal(BTNode root) {
if(root == null) return;
postOrderTraversal(root.left);
postOrderTraversal(root.right);
System.out.print(root.val);
}
// 遍历思路-求结点个数
static int size = 0;
public void getSize1(BTNode root){
if(root == null) return;
size++;
getSize1(root.left);
getSize1(root.right);
}
// 子问题思路-求结点个数
int getSize2(BTNode root){
if(root==null){
return 0;
}
return 1+getSize2(root.left)+getSize2(root.right);
}
// 遍历思路-求叶子结点个数
static int leafSize = 0;
void getLeafSize1(BTNode root){
if(root == null) return;
if(root.left == null && root.right == null){
leafSize++;
}
getLeafSize1(root.left);
getLeafSize1(root.right);
}
// 子问题思路-求叶子结点个数
int getLeafSize2(BTNode root){
if(root==null){
return 0;
}
if(root.left == null && root.right == null){
return 1;
}
return getLeafSize2(root.left)+getLeafSize2(root.right);
}
// 子问题思路-求第 k 层结点个数
int getKLevelSize(BTNode root,int k){
if(root == null ) return 0;
if(k == 1){
return 1;
}
return getKLevelSize(root.left,k-1)+
getKLevelSize(root.right,k-1);
}
// 获取二叉树的高度
int getHeight(BTNode root){
if(root == null){return 0;}
return Math.max(getHeight(root.left),getHeight(root.right))+1;
}
// 查找 val 所在结点,没有找到返回 null
BTNode find(BTNode root, char val){
if(root == null) return null;
if(val == root.val) return root;
BTNode ret = find(root.left,val);
if(ret != null){
return ret;
}
ret = find(root.right,val);
if(ret != null){
return ret;
}
return null;
}
// 层序遍历
void levelOrderTraversal(BTNode root){
if(root == null) return;
Queue<BTNode> queue = new LinkedList<>();
queue.offer(root);
while(!queue.isEmpty()){
BTNode cur = queue.poll();
System.out.print(cur.val+" ");
if(cur.left != null) {
queue.offer(cur.left);
}
if(cur.right != null){
queue.offer(cur.right);
}
}
}
}