思路
两个问题:
(1)如何判断是环:设置一个快指针一个慢指针,快指针每次移动两步,慢指针每次移动一步,如果不是环,快指针最后会指向null。如果最后快指针和慢指针相同,则证明有环,快指针在环里不断地转圈。那为什么一定会相遇?因为快指针相对于慢指针每次是多走了一步,因此一定会相遇。
(2)如何判断入口?
假设,x+y是慢指针走的距离,x+y+n*(y+z)是快指针走的距离,其中n大于等于1,那么2(x+y)=x+y+n*(y+z),那么x=(n-1)(y+z)+z,这就相当于,从相遇点算,起点到入口点的距离等于相遇点到入口点+圈的长度*次数。这就是说,相遇点每次在环里走一步,起点每次向入口点走一步,直至同时走到入口点,这可能转了好多圈,也可能没转圈,相等的位置就是入口点。
public class Solution {
public ListNode detectCycle(ListNode head) {
ListNode fast=head;
ListNode slow=head;
while(fast!=null&&fast.next!=null){
fast=fast.next.next;
slow=slow.next;
if(fast==slow){
ListNode index1=head;
ListNode index2=fast;
while(index1!=index2){
index1=index1.next;
index2=index2.next;
}
return index1;
}
}
return null;
}
}