ReLU,Sigmoid,Tanh,softmax,pipeline【基础知识总结】

这篇博客总结了深度学习中常用的激活函数,包括ReLU、Sigmoid、Tanh和softmax的优缺点。ReLU因其计算速度快、避免梯度消失而流行,但存在非对称性问题。Sigmoid和Tanh解决了Sigmoid的中心对称性,但梯度消失问题依然存在。softmax用于多分类问题,将输出转换为概率分布。文中还介绍了Leaky ReLU、PReLU和RReLU等修正版ReLU。最后提到了pipeline在深度学习模型实现中的重要作用。

激活函数的引入是为了增加神经网络模型的非线性,没有激活函数每层就相当于矩阵相乘。每一层输出都是上层的输入的线性函数,无论神经网络多少层,输出都是输入的线性组合,就是最原始的感知机.
加入激活函数,给神经元引入非线性因素,神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。

一、ReLU(Rectified Linear Activation Function)

ReLU全名Rectified Linear Unit,意思是修正线性单元。Relu激活函数是常用的神经激活函数。
ReLU函数其实是分段线性函数,把所有的负值都变为0,而正值不变,这种操作被成为单侧抑制。
如图:在这里插入图片描述

在这里插入图片描述

1、优点

①ReLu具有稀疏性,可以使稀疏后的模型能够更好地挖

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旋转的油纸伞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值