
机器学习基本流程
我们做特征工程的最终目标是模型表现要超过基线模型,目的是挑选/构造出区分度好和目标相关性强/ 对目标值的区分能力比较强的特征。f1_score 2 精准率 * 召回率/ 精准率 + 召回率。AUC指标 取值范围 0.5 ~ 1。使用模型:KNN,线性回归,逻辑回归,决策树,朴素叶贝斯等等。创建对象, 使用训练集fit 测试集predict。精准率 TP/TP+FP。召回率 TP/TP+FN。特征的系数:df.corr()超参数搜索 交叉验证网格搜索。空值,异常值,缺失值的处理。MAE 绝对平均误差。












