机器学习基本流程

本文详细介绍了机器学习开发的基本流程,包括数据加载与处理、特征工程(编码、筛选、降维和缩放)、模型训练(划分数据、超参数调优)、以及模型评估(精度、召回率、AUC等指标)的各个环节。
摘要由CSDN通过智能技术生成

机器学习的开发基本流程:

1、数据加载

使用pandas函数

# 查看数据类型/缺失情况
df.info()

# 查看数据的分布
df.describe()  

# 目标值类别占比,做统计
df['目标名称'].value_counts()

2、数据基本处理

空值,异常值,缺失值的处理

# 一次性计算所有列的缺失情况
df.isnull().sum()

# 删除缺失值
df.dropna() 

# 填充缺失值
df.fillna() 

3、特征工程

我们做特征工程的最终目标是模型表现要超过基线模型,目的是挑选/构造出区分度好和目标相关性强/ 对目标值的区分能力比较强的特征。

特征编码

# one-hot编码
pd.get_dummies()

# 顺序编码
skearn labelEncoder()

特征筛选

        特征降维

# 删除低方差特征
from sklearn.feature_selection import VarianceThreshold

特征缩放

# 归一化  
from sklearn.preprocessing import MinMaxScaler
# 标准化
from sklearn.preprocessing import StandardScaler

特征的系数:df.corr()

关于集成学习输出特征重要性feature_importance<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值