【数据结构与算法】时空复杂度(时间复杂度和空间复杂度)

时间复杂度

一个算法中的语句执行次数称为语句频度或时间频度。记为T(n).一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度。

一般总是考虑在最坏情况下的时间复杂度,以保证算法的运行时间不会比它更长。

f(n) n越大算法的执行时间越长

  • 排序:n为记录数

  • 矩阵:n为矩阵的阶数

  • 多项式:n为多项式的项数

  • 集合:n为元素个数

  • 树:n为树的结点个数

  • 图:n为图的顶点数或边数

常见的时间复杂度量级

  • 常数阶:O(1)

  • 对数阶:O(logN)

  • 线性阶:O(n)

  • 线性对数阶:O(nlogN)

  • 平方阶:O(​​​$n^2$)

  • 立方阶:O(​$n^3$)

  • k次方阶:O($n^k$​)

  • 指数阶:O($2^n$​)

从上至下依次的时间复杂度越来越大,执行的效率越来越低

其他:

  • 多项式复杂度:O(​$n^k$​)

  • 阶乘复杂度:O(n!)                O($2^n$​)<O(n!)<O($n^n$)

  • 在无序数列中查找某个数(顺序查找):O(n)

  • 平面上有n个点,求出任意两点间的距离:O(​$n^2$)

  • 插入排序、选择排序、冒泡排序:O($n^2$​)

  • 快速排序:O(n*log(n))

  • 二分查找:O(log(n))

我们假设计算机运行一行基础代码需要执行一次运算,那么下边这个代码需要执行2次运算

时间复杂度为O(1)

int aFunc(void){
    printf("Hello,World!\n");
    return 0;
}

再看这个

int aFunc(int n){
    for(int i=0;i<n;i++){
        printf("Hello,World!\n");
    }
    return 0;
}

这个代码需要(n+1+n+1)=2n+2次运算

时间复杂度为O(n)

我们知道常数项对函数的增长速度影响不大,所以当T(n)=C,C为一个常数的时候,我们说这个算法的时间复杂度为O(1);如果T(n)不等于一个常数项时,直接将常数项省略。

我们知道高次项对于函数的增长速度的影响是最大的,同时因为要求的精度不高,所以我们直接忽略低次项。或者说:如果复杂度是多个n的函数之和,则只关心随n的增长而增长得最快的那个函数

  • O($n^3$​+$n^2$​)->O($n^3$​)

  • O(​$2^n$+$n^3$​)->O(​$2^n$)

  • O(n!+$3^n$​)->O(n!)

因为函数的阶数对函数的增长速度的影响是最显著的,所以我们忽略与最高阶相乘的常数

O(3$n^3$​)->O(​$n^3$)

求时间复杂度

long aFunc(int n){
    if(n<=1){
        return 1;
    }else{
        return aFunc(n-1)+aFunc(n-2);
    }
}

显然运行次数T(0)=T(1)=1,同时T(n)=T(n-1)+T(n-2)+1,这里的1是其中的加法算一次执行。

显然T(n)=T(n-1)+T(n-2)是一个斐波那契数列,通过归纳证明法可以证明,当n>=1时T(n)<​$(5/3)^n$,同时当n>4时T(n)>=​$(3/2)^n$

所以时间复杂度可以表示为O($(5/3)^n$​),简化后为O(​$2^n$)

线性阶O(n)

for(i=1;i<=n;++i){
    j=i;
    j++;
}

for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的

常数阶O(1)

int i=1;
int j=2;
++i;
j++;
int m=i+j;

代码在执行的时候,它消耗的时间并不随着某个变量的增长而增长,那么无论这类代码有多长,都可以用O(1)来表示它的时间复杂度

对数阶O(logN)

int i=1;
while(i<n)
{
i=i*2;
}

在while循环里面,每次都将i乘以2,乘完之后,i距离n就越来越近了。我们试着求解一下,假设循环x次之后,i就大于n了,此时这个循环就退出了,也就是说2的x次方等于n,那么x=​$log_2$n

线性对数阶O(nlogN)

将时间复杂度为O(logN)的代码循环n遍的话,那么它的时间复杂度就是n*O(logN),也就是O(nlogN)

for(m=1;m<n;m++){
    int i=1;
    while(i<n)
    {
      i=i*2;
    }
}

平方阶O($n^2$​)

for(x=1;i<=n;x++){
    for(i=1;i<=n;i++){
        j=i;
        j++;
    }
}

如果把O(n)的代码再嵌套循环一遍,它的时间复杂度就是O($n^2$​)

如果将其中一层循环的n改成m那它的时间复杂度就变成O(m*n)

空间复杂度

一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。用S(n)来定义。计算公式S(n)=O(f(n)).其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。

常量空间-空间复杂度O(1)

如果算法执行所需要的临时空间不随着某个变量n的大小而变化,即此算法空间复杂度为一个常量,可表示为O(1)

int i=1;
int j=2;
++i;
j++;
int m=i+j;

线性空间-空间复杂度O(n)

int[] m=new int[n];
for(i=1;i<=n;++i)
{
    j=i;
    j++;
}

这段代码中,第一行new了一个数组出来,这个数据占用的大小为n,这段代码的2-6行,虽然有循环,但没有再分配新的空间。因此,这段代码的空间复杂度主要看第一行即可,即S(n)=O(n)

二维空间-空间复杂度O($n^2$​)

当算法分配的空间是一个二维数组集合,并且集合的长度和宽度都与输入规模n成正比时,空间复杂度记作O(​)

int[][] matrix=new int[n][n];//O(n^2)
int[][] matrix=new int[m][n];//O(mn)

递归空间

void fun4(int n){
    if(n<=1){
        return;
    }
    fun4(n-1);
    ...
}

正如上述代码一样,递归代码中没有显示声明变量或者集合,但是计算机在执行程序时,会专门分配一块内存,用来存储“方法调用栈”。方法调用栈包括入栈和出栈两个操作:

当进入一个新方法时,执行入栈操作,把调用的方法和参数信息压入栈中

当方法返回时,执行出栈操作,把调用的方法和参数信息从栈中弹出

还是上述代码,假设现在传入参数5,那么方法fun4(5)的调用信息先入栈:

method    fun4

      n          5

接下来递归调用相同的方法,方法fun4(4)的调用信息入栈:

method    fun4

      n          4

method    fun4

      n          5

以此类推,递归越来越深,栈内的元素也越来越多,最终:

method    fun4

      n          1

method    fun4

      n          2

method    fun4

      n          3

method    fun4

      n          4

method    fun4

      n          5

当n=1的时候,触发递归的结束条件,执行return,方法出栈。最终所有入栈的元素都会出栈。

由上面“方法调用栈”的出入栈过程可以看出,执行递归操作所需要的内存空间和递归的深度成正比。纯粹的递归操作的空间复杂度也是线性的,如果递归的深度是n,那么空间复杂度就是O(n)

参考:

【精选】时间复杂度和空间复杂度(超详细)_复杂度级别-CSDN博客

算法时间复杂度_n!复杂度-CSDN博客

【精选】算法空间复杂度-CSDN博客

十分钟搞定时间复杂度(算法的时间复杂度)-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值