235. 二叉搜索树的最近公共祖先
二叉搜索树:一棵二叉树,可以为空;如果不为空,满足以下性质:
非空左子树的所有键值小于其根结点的键值。
非空右子树的所有键值大于其根结点的键值。
左、右子树都是二叉搜索树。
从上向下遍历
与二叉树的最近公共祖先不同,利用二叉搜索树的特型,如果p和q都比当前遍历的节点都小,说明公共祖先一定在当前节点的左子树中,此时想左遍历,反之
如果在p.q之间,就一定是公共节点(但不一定是最近的),p在左子树,q在右子树
也是用递归
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* traversal(TreeNode* cur, TreeNode* p, TreeNode* q){
if(cur==NULL) return cur;
if(cur->val>p->val && cur->val>q->val){
TreeNode* left = traversal(cur->left,p,q);
if(left!=NULL) return left;
}
if(cur->val<p->val && cur->val<q->val){
TreeNode* right = traversal(cur->right,p,q);
if(right!=NULL) return right;
}
return cur;
}
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
return traversal(root,p,q);
}
};
701.二叉搜索树中的插入操作
小于当前节点插入左边,大于插入右边
也是递归
class Solution {
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
if (root == NULL) {
TreeNode* node = new TreeNode(val);
return node;
}
if (root->val > val) root->left = insertIntoBST(root->left, val);
if (root->val < val) root->right = insertIntoBST(root->right, val);
return root;
}
};
450.删除二叉搜索树中的节点
添加节点不用改树的结构,但是删除需要改
几种情况:
① 没找到要删的节点
② 找到删除的节点,左空,右空,是叶子节点(不用改结构)
③ 找到,左不是空节点,右空(直接让父节点指向左)
④ 找到,左空,右不空(直接让父节点指向右)
⑤ 找到,左不空,右不空(最复杂,需要大幅度调整二叉树,任选一个比如右孩子继位,将左子树放在右子树最左侧的位置)
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
if(root==nullptr) return nullptr;//没找到删除节点
if(root->val==key){
if(root->left==nullptr && root->right==nullptr){//找到,左右为空
return nullptr;
}
else if(root->left!=nullptr && root->right==nullptr){
return root->left;
}
else if(root->left==nullptr && root->right!=nullptr){
return root->right;
}
else{
TreeNode* cur = root->right;
while(cur->left!=nullptr) {
cur=cur->left;
}
cur->left = root->left;
return root->right;
}
}
if(root->val>key) root->left=deleteNode(root->left, key);
if(root->val<key) root->right=deleteNode(root->right,key);
return root;
}
};
669. 修剪二叉搜索树
只保留区间内的部分
还是用递归
- 递归参数:模板 TreeNode* trimBST(TreeNode* root, int low, int high)
- 终止条件:遇到root==null
- 递归逻辑:如果root(当前节点)的元素小于low的数值,那么应该递归右子树,并返回右子树符合条件的头结点,反之
108.将有序数组转换为二叉搜索树
本质就是寻找中间节点作为根节点,分割之后对左右区间再分别找中间节点,如果没有最中间的,取左侧节点或右侧都行
构造二叉树的时候尽量不要重新定义左右区间数组,而是用下标来操作原数组
- 递归参数:模板 TreeNode* traversal(vector& nums, int left, int right)
- 终止条件:定义左闭右臂区间,所以 if (left > right) return nullptr;
- 递归逻辑:int mid = left + ((right - left) / 2);(防止数组越界的操作);然后以中间位置的元素构造节点,代码:TreeNode* root = new TreeNode(nums[mid]);然后划分区间,root的左孩子接住下一层左区间的构造节点,右孩子接住下一层右区间构造的节点。最后返回root节点。
538.把二叉搜索树转换为累加树
要从最大的节点开始遍历,中序遍历是左中右,这道题用右中左
在二叉搜索树中使用双指针
- 递归参数:void traversal(TreeNode* cur)。不需要返回值
- 终止条件:遇到空的就终止
- 递归逻辑:让cur的数值加上前一个节点的数值